Volume 7 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Cheng Cai, Weiqiang Tang, Chongzhi Qiao, Bo Bao, Peng Xie, Shuangliang Zhao, Honglai Liu. A reaction density functional theory study of solvent effect in the nucleophilic addition reactions in aqueous solution. Green Energy&Environment, 2022, 7(4): 782-791. doi: 10.1016/j.gee.2020.11.028
Citation: Cheng Cai, Weiqiang Tang, Chongzhi Qiao, Bo Bao, Peng Xie, Shuangliang Zhao, Honglai Liu. A reaction density functional theory study of solvent effect in the nucleophilic addition reactions in aqueous solution. Green Energy&Environment, 2022, 7(4): 782-791. doi: 10.1016/j.gee.2020.11.028

A reaction density functional theory study of solvent effect in the nucleophilic addition reactions in aqueous solution

doi: 10.1016/j.gee.2020.11.028
  • Whereas the proper choice of reaction solvent constitutes the cornerstone of the green solvent concept, solvent effects on chemical reactions are not mechanistically well understood due to the lack of feasible molecular models. Herein, by taking the case study of nucleophilic addition reaction in aqueous solution, we extend the proposed multiscale reaction density functional theory (RxDFT) method to investigate the intrinsic free energy profile and total free energy profile, and study the solvent effect on the activation and reaction free energy for the nucleophilic addition reactions of hydroxide anion with methanal and carbon dioxide in aqueous solution. The predictions of the free energy profile in aqueous solution for these two nucleophilic addition reactions from RxDFT have a satisfactory agreement with the results from the RISM and MD-FEP simulation. Meanwhile, the solvent effect is successfully addressed by examining the difference of the free energy profile between the gas phase and aqueous phase. In addition, we investigate the solvent effect on the reactions occurred near solid-liquid interfaces. It is shown that the activation free energy is significantly depressed when reaction takes place in the region within 10 Å distance to the substrate surface owing to the decrease of hydration free energy at the solid-liquid interface.

     

  • loading
  • [1]
    R.A. Sheldon, I. Arends, U. Hanefeld, Green Chemistry and Catalysis, John Wiley & Sons, 2007
    [2]
    J.H. Clark, R. Luque, A.S. Matharu, Ann. Rev. Chem. Biomolecul. Eng. 3 (2012) 183-207
    [3]
    M. Poliakoff, P. Licence, Nature 450 (2007) 810-812
    [4]
    J.H. Clark, Green Chem. 1 (1999) 1-8
    [5]
    A. Paul, W. John, Oxford[England], New York:Oxford University Press 11 (1998) 1394013941
    [6]
    A.M. Thayer, Chem. Eng. News 90 (2012) 20-20
    [7]
    M. Cann, T. Dickneider, T. Foley, D. Marx, D. Narsavage-Heald, J. Wasilewski, Atom Economy:A Measure of the Efficiency of a Reaction. The University of Scranton. Consultado por ultima vez en abril de:2009
    [8]
    B.M. Trost, Science 254 (1991) 1471-1477
    [9]
    D. Prat, O. Pardigon, H.-W. Flemming, S. Letestu, V.R. Ducandas, P. Isnard, E. Guntrum, T. Senac, S.P. Ruisseau, P. Cruciani, Org. Process Res. Dev. 17 (2013) 1517-1525
    [10]
    R.A. Sheldon, Chem. Soc. Rev. 41 (2012) 1437-1451
    [11]
    K.J. Laidler, M.C. King, J. Phys. Chem. 87 (1983) 2657-2664
    [12]
    F. Hirata, Molecular Theory of Solvation, Springer Science & Business Media, 2003
    [13]
    Y. Wang, G. Ding, X. Yang, H. Zheng, Y. Zhu, Y. Li, Appl. Catal. B Environ. 235 (2018) 150-157
    [14]
    D.Y. Murzin, Catal. Sci. Technol. 6 (2016) 5700-5713
    [15]
    P.J. Dyson, P.G. Jessop, Catal. Sci. Technol. 6 (2016) 3302-3316
    [16]
    C.-J. Li, Acc. Chem. Res. 43 (2010) 581-590
    [17]
    S. Zhang, J. Sun, X. Zhang, J. Xin, Q. Miao, J. Wang, Chem. Soc. Rev. 43 (2014) 7838-7869
    [18]
    S. Wesselbaum, U. Hintermair, W. Leitner, Angew. Chem. Int. Ed. 51 (2012) 8585-8588
    [19]
    Y. Yasaka, C. Wakai, N. Matubayasi, M. Nakahara, J. Phys. Chem. 114 (2010) 3510-3515
    [20]
    R.P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Rogers, J. Am. Chem. Soc. 124 (2002) 4974-4975
    [21]
    J.L. Kendall, D.A. Canelas, J.L. Young, J.M. Desimone, Chem. Rev. 99 (1999) 543-564
    [22]
    M.J. Burk, S. Feng, M.F. Gross, W. Tumas, J. Am. Chem. Soc. 117 (1995) 8277-8278
    [23]
    G. Monard, K.M. Merz, Acc. Chem. Res. 32 (1999) 904-911
    [24]
    J. Gao, M.A. Thompson, Combined Quantum Mechanical and Molecular Mechanical Methods, ACS Publications, 1998
    [25]
    F. Hirata, P.J. Rossky, Chem. Phys. Lett. 83 (1981) 329-334
    [26]
    D. Marx, J. Hutter, Ab Initio Molecular Dynamics:Basic Theory and Advanced Methods, Cambridge University Press, 2009
    [27]
    G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558
    [28]
    G. Scalmani, M.J. Frisch, J. Chem. Phys. 132 (2010) 114110
    [29]
    C. Cai, W. Tang, C. Qiao, P. Jiang, C. Lu, S. Zhao, H. Liu, Phys. Chem. Chem. Phys. 21 (2019) 24876-24883
    [30]
    W. Tang, J. Zhao, P. Jiang, X. Xu, S. Zhao, Z. Tong, J. Phys. Chem. B (2020)
    [31]
    W. Tang, H. Yu, C. Cai, T. Zhao, C. Lu, S. Zhao, X. Lu, Chem. Eng. Sci. 213 (2020) 115380
    [32]
    T.H. Maren, Physiol. Rev. 47 595-781
    [33]
    B.R.E. Davies, Biol. Rev. 26 (1951)
    [34]
    B. Jonsson, G. Karlstrom, H. Wennerstrom, J. Am. Chem. Soc. 100 (1978) 1658-1661
    [35]
    J.Y. Liang, W.N. Lipscomb, J. Am. Chem. Soc. 108 (1986) 5051-5058
    [36]
    B. Pinsent, L. Pearson, F. Roughton, Trans. Faraday Soc. 52 (1956) 1512-1520
    [37]
    S. Miertus, O. Kysel, M. Krajci, Chem. Zvesti 35 (1981) 3-7
    [38]
    Z. Peng, K.M. Merz Jr, J. Am. Chem. Soc. 115 (1993) 9640-9647
    [39]
    Z. Peng, K.M. Merz Jr, J. Am. Chem. Soc. 114 (1992) 2733-2734
    [40]
    K. Leung, I.M. Nielsen, I. Kurtz, J. Phys. Chem. B 111 (2007) 4453-4459
    [41]
    A.V. Nemukhin, I.A. Topol, B.L. Grigorenko, S.K. Burt, J. Phys. Chem. B 106 (2002) 1734-1740
    [42]
    J.D. Madura, W.L. Jorgensen, J. Am. Chem. Soc. 108 (1986) 2517-2527
    [43]
    H.A. Yu, M. Karplus, J. Am. Chem. Soc. 112 (1990) 5706-5716
    [44]
    W. Tang, C. Cai, S. Zhao, H. Liu, J. Phys. Chem. C 122 (2018) 20745-20754
    [45]
    S. Zhao, Z. Jin, J. Wu, J. Phys. Chem. B 115 (2011) 6971-6975
    [46]
    S. Zhao, R. Ramirez, R. Vuilleumier, D. Borgis, J. Chem. Phys. 134 (2011) 2395
    [47]
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et. al., "Gaussian 09," Revision A.1, Gaussian, Inc., Wallingford, 2009
    [48]
    R.F. Ribeiro, A.V. Marenich, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. B 115 (2011) 14556-14562
    [49]
    A.V. Marenich, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. B 113 (2009) 6378-6396
    [50]
    S. Grimme, M. Steinmetz, Phys. Chem. Chem. Phys. 15 (2013) 16031-16042
    [51]
    W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118 (1996) 11225-11236
    [52]
    D. Bakowies, P.A. Kollman, J. Am. Chem. Soc. 121 (1999) 5712-5726
    [53]
    S. Zhao, J. Wu, Mol. Phys. 109 (2011) 2553-2564
    [54]
    S. Zhao, H. Liu, R. Ramirez, D. Borgis, J. Chem. Phys. 139 (2013) 034503
    [55]
    M. Levesque, R. Vuilleumier, D. Borgis, J. Chem. Phys. 137 (2012) 034115
    [56]
    Y. Liu, S. Zhao, J. Wu, J. Chem. Theor. Comput. 9 (2013) 1896-1908
    [57]
    Y.X. Yu, J. Wu, J. Chem. Phys. 117 (2002) 10156-10164
    [58]
    A.L. Archer, G. Jackson, Mol. Phys. 73 (1991) 881-896
    [59]
    S. Zhao, Y. Liu, X. Chen, Y. Lu, H. Liu, Y. Hu, in Advances in Chemical Engineering, Elsevier, 2015, vol. 47, pp. 1-83
    [60]
    H.J.C. Berendsen, J.P.M. Postma, W.F.V. Gunsteren, J. Hermans, Interaction Models for Water in Relation to Protein Hydration, Springer Netherlands, 1981
    [61]
    L. Qing, J. Tao, H. Yu, P. Jiang, C. Qiao, S. Zhao, H. Liu, AIChE J. (2020)
    [62]
    S.G. Johnson, Proc. IEEE 93 (2005) 216-231
    [63]
    R.H. Byrd, P. Lu, J. Nocedal, C. Zhu, SIAM J. Sci. Comput. 16 (1995) 1190-1208
    [64]
    X. Yu, W. Tang, T. Zhao, Z. Jin, S. Zhao, H. Liu, Langmuir 34 (2018) 13491-13496
    [65]
    L. Trembleau, J. Rebek, Science 301 (2003) 1219-1220
    [66]
    D.W. Siderius, L.D. Gelb, J. Chem. Phys. 135 (2011) 084703
    [67]
    M.D. Halls, H.B. Schlegel, J. Phys. Chem. B 106 (2002) 1921-1925
    [68]
    W. Zheng, S.A. Yamada, S.T. Hung, W. Sun, L. Zhao, M.D. Fayer, J. Am. Chem. Soc. 142 (2020) 5636-5648
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (267) PDF downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return