Volume 7 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Fan Zhang, Xiaoying Xu, Zhengpu Qiu, Bo Feng, Yuan Liu, Aihua Xing, Maohong Fan. Improved methanol synthesis performance of Cu/ZnO/Al2O3 catalyst by controlling its precursor structure. Green Energy&Environment, 2022, 7(4): 772-781. doi: 10.1016/j.gee.2020.11.027
Citation: Fan Zhang, Xiaoying Xu, Zhengpu Qiu, Bo Feng, Yuan Liu, Aihua Xing, Maohong Fan. Improved methanol synthesis performance of Cu/ZnO/Al2O3 catalyst by controlling its precursor structure. Green Energy&Environment, 2022, 7(4): 772-781. doi: 10.1016/j.gee.2020.11.027

Improved methanol synthesis performance of Cu/ZnO/Al2O3 catalyst by controlling its precursor structure

doi: 10.1016/j.gee.2020.11.027
  • Methanol, a versatile chemical, fuel additive and potential H2 carrier, has attracted great attention. Despite of the wide industrialization, improvement of Cu-based methanol-synthesis catalysts is highly anticipated. Accordingly, a series of Cu/ZnO/Al2O3 with designed precursor structures were prepared, and its structure-function relationship was investigated to make progress on this area. Results showed the catalyst derived from highly zinc-substituted malachite demonstrated the best catalytic performance in this work. It was found that the well-behaved catalyst possessed relatively high Cu specific surface area and exposed Cu concentration, and the well Cu/ZnO synergy. CuZn alloy was found by In-situ XRD tests, and its effect on the catalyst's thermostability was discussed. Fractional precipitation, which facilitated the Cu2+ substitution by Zn2+ in malachite lattice, could be an efficient preparation method of the Cu/ZnO/Al2O3 catalyst.

     

  • loading
  • [1]
    E. Jin, Y. Zhang, L. He, H.G. Harris, B. Teng, M. Fan, Indirect coal to liquid technologies, Appl. Catal. A Gen. 476 (2014) 158-174. https://doi.org/10.1016/j.apcata.2014.02.035
    [2]
    X. Xu, Y. Liu, F. Zhang, W. Di, Y. Zhang, Clean coal technologies in China based on methanol platform, Catal. Today. 298 (2017) 61-68. https://doi.org/10.1016/j.cattod.2017.05.070
    [3]
    J. Sehested, Industrial and scientific directions of methanol catalyst development, J. Catal. 371 (2019) 368-375. https://doi.org/10.1016/j.jcat.2019.02.002
    [4]
    M. Behrens, Angew. Chem. Int. Ed. 55 (2016) 14906-14908.
    [5]
    L. Zwiener, F. Girgsdies, D. Brennecke, D. Teschner, A.G.F. Machoke, R. Schlogl, E. Frei, Evolution of zincian malachite synthesis by low temperature co-precipitation and its catalytic impact on the methanol synthesis, Appl. Catal. B Environ. 249 (2019) 218-226. https://doi.org/10.1016/j.apcatb.2019.02.023
    [6]
    M. Behrens, Coprecipitation:An excellent tool for the synthesis of supported metal catalysts-From the understanding of the well known recipes to new materials, Catal. Today. 246 (2015) 46-54. https://doi.org/10.1016/j.cattod.2014.07.050
    [7]
    J.L. Li, T. Inui, Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures, Appl. Catal. A Gen. 137 (1996) 105-117. https://doi.org/10.1016/0926-860X(95)00284-7
    [8]
    G.J. Millar, I.H. Holm, P.J.R. Uwins, J. Drennan, Characterization of precursors to methanol synthesis catalysts Cu/ZnO system, J. Chem. Soc.-Faraday Trans. 94 (1998) 593-600. https://doi.org/10.1039/a703954i
    [9]
    C. Baltes, S. Vukojević, F. Schüth, J. Catal. 258 (2008) 334-344.
    [10]
    J. Schumann, A. Tarasov, N. Thomas, R. Schlogl, M. Behrens, Cu,Zn-based catalysts for methanol synthesis:On the effect of calcination conditions and the part of residual carbonates, Appl. Catal. A Gen. 516 (2016) 117-126. https://doi.org/10.1016/j.apcata.2016.01.037
    [11]
    A. Andrey, T. Julia, S. Frank, N. Thomas, M. Behrens, Thermokinetic investigation of binary Cu/Zn hydroxycarbonates as precursors for Cu/ZnO catalysts Author:, Thermochim. Acta. (2014). https://doi.org/10.1016/j.tca.2014.04.025
    [12]
    M. Bahmani, B. Vasheghani Farahani, S. Sahebdelfar, Appl. Catal. Gen. 520 (2016) 178-187.
    [13]
    H. Zheng, N. Narkhede, H. Zhang, Z. Li, ChemCatChem 12 (2020) 2040-2049.
    [14]
    M. Behrens, F. Girgsdies, Structural effects of Cu/Zn substitution in the malachite-rosasite system, Zeitschrift Fur Anorg. Und Allg. Chemie. 636 (2010) 919-927. https://doi.org/10.1002/zaac.201000028
    [15]
    M. Behrens, R. Schlogl, How to prepare a good Cu/ZnO catalyst or the role of solid state chemistry for the synthesis of nanostructured catalysts, Zeitschrift Fur Anorg. Und Allg. Chemie. 639 (2013) 2683-2695. https://doi.org/10.1002/zaac.201300356
    [16]
    B.V. Farahani, F.H. Rajabi, M. Bahmani, M. Ghelichkhani, S. Sahebdelfar, Influence of precipitation conditions on precursor particle size distribution and activity of Cu/ZnO methanol synthesis catalyst, Appl. Catal. A Gen. 482 (2014) 237-244. https://doi.org/10.1016/j.apcata.2014.05.034
    [17]
    L. Zhang, F. Li, D.G. Evans, X. Duan, Structure and surface characteristics of Cu-based composite metal oxides derived from layered double hydroxides, Mater. Chem. Phys. 87 (2004) 402-410. https://doi.org/10.1016/j.matchemphys.2004.06.010
    [18]
    M. Behrens, I. Kasatkin, S. Kühl, G. Weinberg, Chem. Mater. 22 (2010) 386-397.
    [19]
    P. Gao, F. Li, H. Zhan, N. Zhao, F. Xiao, W. Wei, L. Zhong, Y. Sun, J. Catal. 298 (2013) 51-60.
    [20]
    Y. Liu, K. Sun, H. Ma, X. Xu, X. Wang, Cr, Zr-incorporated hydrotalcites and their application in the synthesis of isophorone, Catal. Commun. 11 (2010) 880-883. https://doi.org/10.1016/j.catcom.2010.03.014
    [21]
    L.H. Zhang, C. Zheng, F. Li, D.G. Evans, X. Duan, Copper-containing mixed metal oxides derived from layered precursors:control of their compositions and catalytic properties, J. Mater. Sci. 43 (2008) 237-243. https://doi.org/10.1007/s10853-007-2167-8
    [22]
    P. Gao, F. Li, H. Zhan, N. Zhao, F. Xiao, W. Wei, L. Zhong, Y. Sun, Catal. Commun. 50 (2014) 78-82.
    [23]
    P. Gao, R. Xie, H. Wang, L. Zhong, L. Xia, Z. Zhang, W. Wei, Y. Sun, J. CO2 Util. 11 (2014) 41-48.
    [24]
    S. Xiao, Y. Zhang, P. Gao, L. Zhong, X. Li, Z. Zhang, H. Wang, W. Wei, Y. Sun, Catal. Today 281 (2017) 327-336.
    [25]
    S. Kuhl, A. Tarasov, S. Zander, I. Kasatkin, M. Behrens, Cu-Based Catalyst Resulting from a Cu,Zn,Al Hydrotalcite-Like Compound:A Microstructural, Thermoanalytical, and InεSitu XAS Study, Chem.-A Eur. J. 20 (2014) 3782-3792. https://doi.org/10.1002/chem.201302599
    [26]
    Z. Chu, H. Chen, Y. Yu, Q. Wang, D. Fang, J. Mol. Catal. Chem. 366(2013) 48-53.
    [27]
    F. Zhang, Y. Liu, X. Xu, P. Yang, P. Miao, Y. Zhang, Q. Sun, Fuel Process. Technol. 178 (2018) 148-155.
    [28]
    F. Zhang, Y. Zhang, L. Yuan, K.A.M. Gasem, J. Chen, F. Chiang, Y. Wang, M. Fan, Synthesis of Cu/Zn/Al/Mg catalysts on methanol production by different precipitation methods, Mol. Catal. 441 (2017) 190-198. https://doi.org/10.1016/j.mcat.2017.08.015
    [29]
    W. Di, J. Cheng, S. Tian, J. Li, J. Chen, Q. Sun, Synthesis and characterization of supported copper phyllosilicate catalysts for acetic ester hydrogenation to ethanol, Appl. Catal. A Gen. 510 (2016) 244-259. https://doi.org/10.1016/j.apcata.2015.10.026
    [30]
    G. Simson, E. Prasetyo, S. Reiner, O. Hinrichsen, Appl. Catal. Gen. 450 (2013) 1-12.
    [31]
    M. Behrens, J. Catal. 267 (2009) 24-29.
    [32]
    S. Zander, B. Seidlhofer, M. Behrens, In situ EDXRD study of the chemistry of aging of co-precipitated mixed Cu,Zn hydroxycarbonates-consequences for the preparation of Cu/ZnO catalysts, Dalt. Trans. 41 (2012) 13413. https://doi.org/10.1039/c2dt31236k
    [33]
    S. Kuld, M. Thorhauge, H. Falsig, C.F. Elkjaer, S. Helveg, I. Chorkendorff, J. Sehested, Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis, Science (80-.). 352 (2016) 969-974. https://doi.org/10.1126/science.aaf0718
    [34]
    B. Bems, M. Schur, A. Dassenoy, H. Junkes, D. Herein, R. Schlogl, Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates, Chem.-A Eur. J. 9 (2003) 2039-2052. https://doi.org/10.1002/chem.200204122
    [35]
    J. Schumann, T. Lunkenbein, A. Tarasov, N. Thomas, R. Schlogl, M. Behrens, Synthesis and characterisation of a highly active Cu/ZnO:Al catalyst, ChemCatChem. (2014) 2889-2897. https://doi.org/10.1002/cctc.201402278
    [36]
    B. Hu, Y. Yin, G. Liu, S. Chen, X. Hong, S.C.E. Tsang, J. Catal. 359(2018) 17-26.
    [37]
    T. Lunkenbein, J. Schumann, M. Behrens, R. Schlögl, M.G. Willinger, Angew. Chem. Int. Ed. 54 (2015) 4544-4548.
    [38]
    L.C. Wang, Y.M. Liu, M. Chen, Y. Cao, H.Y. He, G.S. Wu, W.L. Dai, K.N. Fan, Production of hydrogen by steam reforming of methanol over Cu/ZnO catalysts prepared via a practical soft reactive grinding route based on dry oxalate-precursor synthesis, J. Catal. 246 (2007) 193-204. https://doi.org/10.1016/j.jcat.2006.12.006
    [39]
    H. Lei, Z. Hou, J. Xie, Fuel 164 (2016) 191-198.
    [40]
    J.T. Kloprogge, L. Hickey, R.L. Frost, The effects of synthesis pH and hydrothermal treatment on the formation of zinc aluminum hydrotalcites, J. Solid State Chem. 177 (2004) 4047-4057. https://doi.org/10.1016/j.jssc.2004.07.010
    [41]
    S. Kattel, P.J. Ramirez, J.G. Chen, J.A. Rodriguez, P. Liu, Active sites for CO 2 hydrogenation to methanol on Cu/ZnO catalysts, Science (80-.). 355 (2017) 1296-1299. https://doi.org/10.1126/science.aal3573
    [42]
    M. Kurtz, H. Wilmer, T. Genger, O. Hinrichsen, M. Muhler, Deactivation of Supported Copper Catalysts for Methanol Synthesis, Catal. Letters. 86 (2003) 77-80. https://doi.org/10.1023/A:1022663125977
    [43]
    T. Fujitani, J. Nakamura, The chemical modification seen in the Cu/ZnO methanol synthesis catalysts, Appl. Catal. A Gen. 191 (2000) 111-129. https://doi.org/10.1016/S0926-860X(99)00313-0
    [44]
    M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M. Tovar,R.W. Fischer, J.K. Nørskov, R. Schlögl, Science 336 (2012) 893-897.
    [45]
    S. Zander, E.L. Kunkes, M.E. Schuster, J. Schumann, G. Weinberg, D. Teschner, N. Jacobsen, R. Schlogl, M. Behrens, The role of the oxide component in the development of copper composite catalysts for methanol synthesis, Angew. Chemie-Int. Ed. 52 (2013) 6536-6540. https://doi.org/10.1002/anie.201301419
    [46]
    M.B. Fichtl, D. Schlereth, N. Jacobsen, I. Kasatkin, J. Schumann, M. Behrens, R. Schlögl, O. Hinrichsen, Appl. Catal. Gen. 502 (2015) 262-270.
    [47]
    S. Sadeghi, L. Vafajoo, M. Kazemeini, M. Fattahi, Modeling of the Methanol Synthesis Catalyst Deactivation in a Spherical Bed Reactor :An Environmental Challenge, Procedia. Soc. Behav. Sci. 10 (2014) 84-90. https://doi.org/10.1016/j.apcbee.2014.10.021
    [48]
    M.B. Fichtl, J. Schumann, I. Kasatkin, N. Jacobsen, M. Behrens, R. Schlcgl, M. Muhler, O. Hinrichsen, R. Schlcgl, M. Muhler, O. Hinrichsen, Counting of oxygen defects versus metal surface sites in methanol synthesis catalysts by different probe molecules, Angew. Chemie-Int. Ed. 53 (2014) 7043-7047. https://doi.org/10.1002/anie.201400575
    [49]
    T.P. Maniecki, P. Mierczynski, W.K. Jozwiak, P. Mierczyski, W.K. Jwiak, W.K. Jo, Copper-supported catalysts in methanol synthesis and water gas shift reaction, Kinet. Catal. 51 (2010) 843-848. https://doi.org/10.1134/S0023158410060108
    [50]
    J. Schumann, M. Eichelbaum, T. Lunkenbein, N. Thomas, M.C. Alvarez Galvan, R. Schlogl, M. Behrens, Promoting strong metal support interaction:Doping ZnO for enhanced activity of Cu/ZnO:M (M=Al, Ga, Mg) catalysts, ACS Catal. 5 (2015) 3260-3270. https://doi.org/10.1021/acscatal.5b00188
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (164) PDF downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return