Volume 7 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Xuyan Wang, Jianwei Bai, Yantao Wang, Xiaoying Lu, Zehua Zou, Junfeng Huang, Cailing Xu. Sulfur vacancies-doped Sb2S3 nanorods as high-efficient electrocatalysts for dinitrogen fixation under ambient conditions. Green Energy&Environment, 2022, 7(4): 755-762. doi: 10.1016/j.gee.2020.11.016
Citation: Xuyan Wang, Jianwei Bai, Yantao Wang, Xiaoying Lu, Zehua Zou, Junfeng Huang, Cailing Xu. Sulfur vacancies-doped Sb2S3 nanorods as high-efficient electrocatalysts for dinitrogen fixation under ambient conditions. Green Energy&Environment, 2022, 7(4): 755-762. doi: 10.1016/j.gee.2020.11.016

Sulfur vacancies-doped Sb2S3 nanorods as high-efficient electrocatalysts for dinitrogen fixation under ambient conditions

doi: 10.1016/j.gee.2020.11.016
  • Tuning surface electron transfer process by sulfur (S)-vacancies engineering is an efficient strategy to develop high-efficient catalysts for electroreduction N2 reaction (NRR). Herein, the distinct Sb2S3 nanorods with S-vacancies (Sv-Sb2S3) have been synthesized by a simple two-step method including hydrothermal and hydrogenation in H2/Ar atmosphere, which shows improved performance for NRR with the NH3 yield rate of 10.85 μg h-1 mgcat-1 at -0.4 V vs. RHE, the faradaic efficiency (FE) of 3.75% at -0.3 V vs. RHE and excellent stability for 24 h, largely outperforming bulk Sb2S3. X-ray photoelectron spectroscopy (XPS) and density function theory (DFT) calculations demonstrate that the abundant S-vacancies can create an electron-deficient environment and modulate the electron delocalization in Sv-Sb2S3, which can not only facilitate the N2 molecule adsorption, but also activate the N≡N, resulting in the enhanced performance for NRR.

     

  • loading
  • [1]
    G.F. Chen, X. Cao, S. Wu, X. Zeng, L.X. Ding, M. Zhu, H. Wang, J Am Chem Soc. 139 (2017) 9771-9774
    [2]
    H. Cheng, L.X. Ding, G.F. Chen, L. Zhang, J. Xue, H. Wang, Adv Mater. 30 (2018) 1803694
    [3]
    L. Zhang, X.Y. Xie, H. Wang, L. Ji, Y. Zhang, H. Chen, T. Li, Y. Luo, G. Cui, X. Sun, Chem Commun. 55 (2019) 4627-4630
    [4]
    C. Chen, D. Yan, Y. Wang, Y. Zhou, Y. Zou, Y. Li, S. Wang, Small. 15 (2019) 1805029
    [5]
    X. Li, X. Ren, X.J. Liu, J. Zhao, X. Sun, Y. Zhang, X. Kuang, T. Yan, Q. Wei, D. Wu, J Mater Chem A. 7 (2019) 2524-2528
    [6]
    B.H.R. Suryanto, D. Wang, L.M. Azofra, M. Harb, L. Cavallo, R. Jalili, D.R.G. Mitchell, M. Chatti, D.R. Macfarlane, ACS Energy Lett. 4 (2018) 430-435
    [7]
    R. Zhang, L. Ji, W. Kong, H. Wang, R. Zhao, H. Chen, T. Li, B. Li, Y. Luo, X. Sun, Chem Commun. 55 (2019) 5263-5266
    [8]
    S. Chu, A. Majumdar, Nature. 488 (2012) 294-303
    [9]
    X. Cui, C. Tang, Q. Zhang, Adv Energy Mater. 8 (2018) 1800369
    [10]
    Y. Yao, H. Wang, X.-Z. Yuan, H. Li, M. Shao, ACS Energy Lett. 4 (2019) 1336-1341
    [11]
    M.M. Shi, D. Bao, B.R. Wulan, Y.H. Li, Y.F. Zhang, J.M. Yan, Q. Jiang, Adv Mater. 29 (2017) 1606550
    [12]
    D. Bao, Q. Zhang, F.L. Meng, H.X. Zhong, M.M. Shi, Y. Zhang, J.M. Yan, Q. Jiang, X.B. Zhang, Adv Mater. 29 (2017) 1604799
    [13]
    J. Wang, L. Yu, L. Hu, G. Chen, H. Xin, X. Feng, Nat Commun. 9 (2018) 1795
    [14]
    M.M. Shi, D. Bao, S.J. Li, B.R. Wulan, J.M. Yan, Q. Jiang, Adv Energy Mater. 8 (2018) 1800124
    [15]
    V. Kordali, G. Kyriacou, C. Lambrou, Chem Commun. (2000) 1673-1674
    [16]
    S. Back, Y. Jung, Phys Chem Chem Phys. 18 (2016) 9161-9166
    [17]
    Y. Fang, Z. Liu, J. Han, Z. Jin, Y. Han, F. Wang, Y. Niu, Y. Wu, Y. Xu, Adv Energy Mater. 9 (2019) 1803406
    [18]
    N. Furuya, H. Yoshiba, J Electroanal Chem Interf Electrochem. 291 (1990) 269-272
    [19]
    Y.T. Liu, X. Chen, J. Yu, B. Ding, Angew Chem Int Ed. 58 (2019) 18903-18907
    [20]
    X. Chen., Y.T. Liu., C. Ma., J. Yu., B. Ding, J Mater Chem A. 7 (2019) 22235-22241
    [21]
    X. Zhang, R.M. Kong, H. Du, L. Xia, F. Qu, Chem Commun. 54 (2018) 5323-5325
    [22]
    Y. Abghoui, A.L. Garden, J.G. Howalt, T. Vegge, E. Skulason, ACS Catal. 6 (2015) 635-646
    [23]
    L. Zhang, L.X. Ding, G.-F. Chen, X. Yang, H. Wang, Angew Chem Int Ed. 58 (2018) 2612-2616
    [24]
    S. Mukherjee, D.A. Cullen, S. Karakalos, K. Liu, H. Zhang, S. Zhao, H. Xu, K.L. More, G. Wang, G. Wu, Nano Energy. 48 (2018) 217-226
    [25]
    C. Lv, Y. Qian, C. Yan, Y. Ding, Y. Liu, G. Chen, G. Yu, Angew Chem Int Ed. 57 (2018) 10246-10250
    [26]
    X. Xiong, G. Wang, Y. Lin, Y. Wang, X. Ou, F. Zheng, C. Yang, J.H. Wang, M. Liu, ACS Nano. 10 (2016) 10953-10959
    [27]
    S. Yao, J. Cui, Z. Lu, Z.L. Xu, L. Qin, J. Huang, Z. Sadighi, F. Ciucci, J.-K. Kim, Adv Energy Mater. 7 (2017) 1602149
    [28]
    Y. Lu, N. Zhang, S. Jiang, Y. Zhang, M. Zhou, Z. Tao, L.A. Archer, J. Chen, Nano Lett. 17 (2017) 3668-3674
    [29]
    D. Li, X. Chen, Y.T. Liu, J. Yu, B. Ding, Chem Commun. 55 (2019) 13892-13895
    [30]
    Z. He, Y. Wang, X. Dong, N. Zheng, H. Ma, X. Zhang, RSC Adv. 9 (2019) 21646-21652
    [31]
    Q. Wang, Y. Lei, D. Wang, Y. Li, Energy Environ Sci. 12 (2019) 1730-1750
    [32]
    S. Zhang, C. Zhao, Y. Liu, W. Li, J. Wang, G. Wang, Y. Zhang, H. Zhang, H. Zhao, Chem Commun. 55 (2019) 2952-2955
    [33]
    W. Fu, P. Zhuang, M. Oliverlam Chee, P. Dong, M. Ye, J. Shen, ACS Sustain Chem Eng. 7 (2019) 9622-9628
    [34]
    Y.T. Liu, M. Zhang, Y. Wang, Y. Zhang, J. Song, Y. Si, J. Yan, C. Ma, J. Yu, B. Ding, Angew Chem Int Ed. DOI: 10.1002/anie.202010110
    [35]
    Y.T. Liu, D. Li, J. Yu, B. Ding, Angew Chem Int Ed. 58 (2019) 16439-16444
    [36]
    L. Zeng, S. Chen, J.V.D. Zalm, X. Li, A. Chen, Chem Commun. 55 (2019) 7386-7389
    [37]
    S. Hu, X. Chen, Q. Li, Y. Zhao, W. Mao, Catal Sci Technol. 6 (2016) 5884-5890
    [38]
    S. Dong, C. Li, X. Ge, Z. Li, X. Miao, L. Yin, ACS Nano. 11 (2017) 6474-6482
    [39]
    L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao, Z. Zhu, Adv Mater. 29 (2017)
    [40]
    P.V. Prikhodchenko, J. Gun, S. Sladkevich, A.A. Mikhaylov, O. Lev, Y.Y. Tay, S.K. Batabyal, D.Y.W. Yu, Chem Mat. 24 (2012) 4750-4757
    [41]
    G. Li, D. Zhang, Q. Qiao, Y. Yu, D. Peterson, A. Zafar, R. Kumar, S. Curtarolo, F. Hunte, S. Shannon, Y. Zhu, W. Yang, L. Cao, J Am Chem Soc. 138 (2016) 16632-16638
    [42]
    J. Wang, Y. Chen, W. Zhou, G. Tian, Y.T. Xiao, H. Fu, H. Fu, J Mater Chem A. 5 (2017) 8451-8460
    [43]
    Q. Zhang, S. Hu, Z. Fan, D. Liu, Y. Zhao, H. Ma, F. Li, Dalton Trans. 45 (2016) 3497-3505
    [44]
    K. Chu, J. Wang, Y. P. Liu, Q.Q. Li, Y.L. Guo, J Mater Chem A. 8 (2020) 7117-7124
    [45]
    H. Huang, L. Xia, X. Shi, A.M. Asiri, X. Sun, Chem Commun. 54 (2018) 11427-11430
    [46]
    M. C.A, M.L. Stone, J.R. Schmidt, J.G. Thomas, Q. Ding, H.C. Chang, M.L. Tsai, J.H. He, S. Jin, Nat Mater. 14 (2015) 1245-1251
    [47]
    B. You, N. Jiang, M. Sheng, M.W. Bhushan, Y. Sun, ACS Catal. 6 (2015) 714-721
    [48]
    H. Jin, L. Li, X. Liu, C. Tang, W. Xu, S. Chen, L. Song, Y. Zheng, S.Z. Qiao, Adv Mater. 31 (2019) 1902709
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (224) PDF downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return