Volume 7 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Chenchen Zhang, Wenbin Chen, Dairong Hu, Hanjie Xie, Yibing Song, Binbin Luo, Yiwen Fang, Wenhua Gao, Ziyi Zhong. Design and in-situ construct BiOI/Bi/TiO2 photocatalysts with metal-mediated heterostructures employing oxygen vacancies in TiO2 nanosheets. Green Energy&Environment, 2022, 7(4): 680-690. doi: 10.1016/j.gee.2020.11.013
Citation: Chenchen Zhang, Wenbin Chen, Dairong Hu, Hanjie Xie, Yibing Song, Binbin Luo, Yiwen Fang, Wenhua Gao, Ziyi Zhong. Design and in-situ construct BiOI/Bi/TiO2 photocatalysts with metal-mediated heterostructures employing oxygen vacancies in TiO2 nanosheets. Green Energy&Environment, 2022, 7(4): 680-690. doi: 10.1016/j.gee.2020.11.013

Design and in-situ construct BiOI/Bi/TiO2 photocatalysts with metal-mediated heterostructures employing oxygen vacancies in TiO2 nanosheets

doi: 10.1016/j.gee.2020.11.013
  • The conventional p-n heterojunction photocatalysts suffer from the incompatibility between the interfacial charge transfer efficiency and the redox ability of charge carriers. To optimize the interfacial charge transfer of the conventional BiOI/TiO2 p-n photocatalyst, we synthesized the BiOI/Bi/TiO2 ternary photocatalyst with sandwiched metallic bismuth (Bi0) by the oxygen-vacancy assisted method. The DFT calculation and structural characterizations confirmed the reaction of the electron-rich oxygen vacancies in the 2D-TiO2 nanosheets (TiO2-NS) with the adsorbed BiO+ species. This reaction broke the Bi-O bonds to form Bi0 nanoparticles in-situ at the interface but still maintained the p-n heterojunction well. The NO-TPD and XRD analyses for samples correlated the Bi0 formation with the oxygen vacancy concentrations well. The sandwiched Bi0 functioned as an electronic transfer mediator like that in the Z-scheme heterostructure. Comparing with 0.20 BiOI/TiO2-NP (NP, Nanoparticles), 0.20 BiOI/Bi/TiO2-NS-a (NS, Nanosheet) showed a much improved catalytic performance, i.e., duplicated apparent quantum yield (AQY) and triplicated reaction rate constant (k). Also, the formation mechanism and the reaction mechanism were investigated in detail. This work provides a new strategy for the improving of the conventional p-n photocatalysts and new insights into the nature of the photocatalysis.

     

  • loading
  • [1]
    J.K. Stolarczyk; S. Bhattacharyya; L. Polavarapu; J. Feldmann, ACS Catal., 8 (2018) 3602-3635
    [2]
    Y.-P. Yuan; L.-W. Ruan; J. Barber; S.C. Joachim Loo; C. Xue, Energy & Environmental Science, 7 (2014) 3934-3951
    [3]
    L. Li; P.A. Salvador; G.S. Rohrer, Nanoscale, 6 (2014) 24-42
    [4]
    K. Li; B.S. Peng; T.Y. Peng, ACS Catal., 6 (2016) 7485-7527
    [5]
    S. Bai; J. Jiang; Q. Zhang; Y. Xiong, Chemical Society Reviews, 44 (2015) 2893-2939
    [6]
    A.J. Bard, Journal of Photochemistry, 10 (1979) 59-75
    [7]
    H. Tada; T. Mitsui; T. Kiyonaga; T. Akita; K. Tanaka, Nature Materials, 5 (2006) 782-786
    [8]
    J. Yu; S. Wang; J. Low; W. Xiao, Chem. Chem. Phys., 15 (2013) 16883-16890
    [9]
    H. Kato; Y. Sasaki; N. Shirakura; A. Kudo, Journal of Materials Chemistry A, 1 (2013) 12327-12333
    [10]
    N. Zhang; S. Xie; B. Weng; Y.-J. Xu, Journal of Materials Chemistry A, 4 (2016) 18804-18814
    [11]
    Z. Zhou; X. Niu; Y. Zhang; J. Wang, Journal of Materials Chemistry A, 7 (2019) 21835-21842
    [12]
    Y. Pang; Y. Li; G. Xu; Y. Hu; K. Kui; Q. Feng; J. Lv; Y. Zhang; J. Wang; Y. Wu, Applied Catalysis B:Environmental, 248 (2019)
    [13]
    W. Yin; L. Bai; Y. Zhu; S. Zhong; L. Zhao; Z. Li; S. Bai, ACS Appl. Mater. Interfaces, 8 (2016) 23133-23142
    [14]
    C. Zhou; S. Wang; Z. Zhao; Z. Shi; S. Yan; Z. Zou, Advanced Functional Materials, 28 (2018) 1801214
    [15]
    X.J. Wen; C.G. Niu; L. Zhang; C. Liang; H. Guo; G.M. Zeng, J. Catal., 358 (2018) 141-154
    [16]
    M.M. Zhang; C. Lai; B.S. Li; D.L. Huang; G.M. Zeng; P. Xu; L. Qin; S.Y. Liu; X.G. Liu; H. Yi; M.F. Li; C.C. Chu; Z. Chen, J. Catal., 369 (2019) 469-481
    [17]
    L. Liu; Y. Jiang; H. Zhao; J. Chen; J. Cheng; K. Yang; Y. Li, ACS Catal., 6 (2016) 1097-1108
    [18]
    J. Yu; J. Low; W. Xiao; P. Zhou; M. Jaroniec, Journal of the American Chemical Society, 136 (2014) 8839-8842
    [19]
    F. Zhang; B. Hong; W. Zhao; Y. Yang; J. Bao; C. Gao; S. Sun, Chem. Commun. 55 (2019) 3757-3760
    [20]
    Y. Zhang; J. Xu, J. Mei, S. Sarina, Z. Wu, T. Liao, C. Yan, Z. Sun, Journal of Hazardous Materials 394 (2020) 122529
    [21]
    J. Xiong; J. Di; J. Xia; W. Zhu; H. Li, Advanced Functional Materials, 28 (2018) 1801983
    [22]
    X.G. Liu; Y.P. Bi, Catal. Sci. Technol., 8 (2018) 3876-3882
    [23]
    J. Sun; M. Zhang; Z.-F. Wang; H.-Y. Chen; Y. Chen; N. Murakami; T. Ohno, Rare Metals, 38 (2019) 287-291
    [24]
    Y.N. Liu; C.L. Miao; P.F. Yang; Y.F. He; J.T. Feng; D.Q. Li, Appl. Catal. B-Environ., 244 (2019) 919-930
    [25]
    J. Wan; W. Chen; C. Jia; L. Zheng; J. Dong; X. Zheng; Y. Wang; W. Yan; C. Chen; Q. Peng; D. Wang; Y. Li, Adv. Mater., 30 (2018) 1705369
    [26]
    Y. Li; S. Yang; Z. Liang; Y. Xue; H. Cui; J. Tian, Materials Chemistry Frontiers, 3 (2019) 2673-2680
    [27]
    Y. Li; Z. Yin; G. Ji; Z. Liang; Y. Xue; Y. Guo; J. Tian; X. Wang; H. Cui, Applied Catalysis B:Environmental, 246 (2019) 12-20
    [28]
    Y. Li; L. Ding; S. Yin; Z. Liang; Y. Xue; X. Wang; H. Cui; J. Tian, Nano-Micro Letters, 12 (2019), 6
    [29]
    Y. Li; L. Ding; Z. Liang; Y. Xue; H. Cui; J. Tian, Chem. Eng. J, 383 (2020) 123178
    [30]
    Y. Yang; C. Zhang; C. Lai; G.M. Zeng; D.L. Huang; M. Cheng; J.J. Wang; F. Chen; C.Y. Zhou; W.P. Xiong, Adv. Colloid Interface Sci., 254 (2018) 76-93
    [31]
    B. Li; X.W. Chen; T.Y. Zhang; S. Jiang; G.H. Zhang; W.B. Wu; X.Y. Ma, Appl. Surf. Sci., 439 (2018) 1047-1056
    [32]
    R. Ge; W. Li; J. Huo; T. Liao; N. Cheng; Y. Du; M. Zhu; Y. Li; J. Zhang, Applied Catalysis B:Environmental, 246 (2019) 129-139
    [33]
    C. Zhang; Y. Nie; T. Liao; L. Kou; A. Du, Physical Review B, 99 (2019) 035424
    [34]
    X.G. Han; Q. Kuang; M.S. Jin; Z.X. Xie; L.S. Zheng, Journal of the American Chemical Society, 131 (2009) 3152-+
    [35]
    J.P. Perdew; K. Burke; M. Ernzerhof, Physical Review Letters, 77 (1996) 3865-3868
    [36]
    B. Liu; E.S. Aydil, Chem. Commun., 47 (2011) 9507-9509
    [37]
    X.L. Hu; S.C. Lu; J. Tian; N. Wei; X.J. Song; X.Z. Wang; H.Z. Cui, Appl. Catal. B-Environ., 241 (2019) 329-337
    [38]
    G.Q. Zhu; M. Hojamberdiev; S.L. Zhang; S.T.U. Din; W. Yang, Appl. Surf. Sci., 467 (2019) 968-978
    [39]
    Y. Hu; J.L. Zhang; M. Minagawa; T. Ayusawa; M. Matsuoka; H. Yamashita; M. Anpo, Res. Chem. Intermed., 29 (2003) 125-135
    [40]
    W. Yang, Y. Yasunori, J. Zhejiang Univ-SCI A 5 (2004) 932-935.
    [41]
    Y. Zhao; X. Huang; X. Tan; T. Yu; X.L. Li; L.B. Yang; S.C. Wang, Appl. Surf. Sci., 365 (2016) 209-217
    [42]
    K. Batalovic; N. Bundaleski; J. Radakovic; N. Abazovic; M. Mitric; R.A. Silva; M. Savic; J. Belosevic-Cavor; Z. Rakocevic; C.M. Rangel, Phys. Chem. Chem. Phys., 19 (2017) 7062-7071
    [43]
    K. Zhu; Y. Yang; W.J. Song, Mater. Lett., 145 (2015) 279-282
    [44]
    H.L. Zhao; J.T. Chen; G.Y. Rao; W. Deng; Y. Li, Appl. Surf. Sci., 404 (2017) 49-56
    [45]
    S.M. Wang; Y. Guan; L.P. Wang; W. Zhao; H. He; J. Xiao; S.G. Yang; C. Sun, Appl. Catal. B-Environ., 168 (2015) 448-457
    [46]
    H.Q. Tan; Z. Zhao; W.B. Zhu; E.N. Coker; B.S. Li; M. Zheng; W.X. Yu; H.Y. Fan; Z.C. Sun, ACS Appl. Mater. Interfaces, 6 (2014) 19184-19190
    [47]
    J. Yu; X. Zhao; Q. Zhao, Materials Chemistry and Physics, 69 (2001) 25-29
    [48]
    S.W. Liu; J.G. Yu; S. Mann, J. Phys. Chem. C, 113 (2009) 10712-10717
    [49]
    X.Y. Xin; T. Xu; J. Yin; L. Wang; C.Y. Wang, Appl. Catal. B-Environ., 176 (2015) 354-362
    [50]
    S. Hoang; S.P. Berglund; N.T. Hahn; A.J. Bard; C.B. Mullins, Journal of the American Chemical Society, 134 (2012) 3659-3662
    [51]
    C. Di Valentin; G. Pacchioni; A. Selloni, J. Phys. Chem. C, 113 (2009) 20543-20552
    [52]
    Q. Zhu; Y. Peng; L. Lin; C.-M. Fan; G.-Q. Gao; R.-X. Wang; A.-W. Xu, Journal of Materials Chemistry A, 2 (2014) 4429-4437
    [53]
    C. Chang; L.Y. Zhu; Y. Fu; X.L. Chu, Chem. Eng. J., 233 (2013) 305-314
    [54]
    S.F. Chen; Y.F. Hu; S.G. Meng; X.L. Fu, Appl. Catal. B-Environ., 150 (2014) 564-573
    [55]
    G.P. Dai; J.G. Yu; G. Liu, J. Phys. Chem. C, 115 (2011) 7339-7346
    [56]
    J. Jiang; X. Zhang; P.B. Sun; L.Z. Zhang, J. Phys. Chem. C, 115 (2011) 20555-20564
    [57]
    S.H. Wu; R. Chen; S.S. Zhang; B.H. Babu; Y.F. Yue; H.M. Zhu; Z.C. Yang; C.L. Chen; W.T. Chen; Y.Q. Huang; S.Y. Fang; T.L. Liu; L.Y. Han; W. Chen, Nat. Commun., 10 (2019) 11
    [58]
    S.B. Ning; H.X. Lin; Y.C. Tong; X.Y. Zhang; Q.Y. Lin; Y.Q. Zhang; J.L. Long; X.X. Wang, Appl. Catal. B-Environ., 204 (2017) 1-10
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (263) PDF downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return