Volume 7 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Harin Yoo, Doohwan Lee, Jung Hyeun Kim. High performance of TiO2/CuxO photoelectrodes for regenerative solar energy storage in a vanadium photoelectrochemical cell. Green Energy&Environment, 2022, 7(4): 704-711. doi: 10.1016/j.gee.2020.11.012
Citation: Harin Yoo, Doohwan Lee, Jung Hyeun Kim. High performance of TiO2/CuxO photoelectrodes for regenerative solar energy storage in a vanadium photoelectrochemical cell. Green Energy&Environment, 2022, 7(4): 704-711. doi: 10.1016/j.gee.2020.11.012

High performance of TiO2/CuxO photoelectrodes for regenerative solar energy storage in a vanadium photoelectrochemical cell

doi: 10.1016/j.gee.2020.11.012
  • Photocatalysts for harvesting solar energy to either electricity or chemical fuels have attracted much attention recently, but they have big obstacles such as wide bandgaps and rapid charge recombinations to overcome for final applications. In this study, we investigates a useful method to utilize vanadium redox pairs, which are commonly applied for vanadium redox flow batteries, to diminish charge recombinations and thus to enhance photocurrent response in regenerative solar energy storage. The results reveal significant improvements in photocurrent density by forming cuprous and cupric oxides in TiO2/CuxO electrodes under solar AM 1.5 illuminations using the vanadium photoelectrochemical storage cell at 0.025 mol L-1 of vanadium redox species in the acid electrolytes. In addition, the stabilized photocurrent density of the copper content optimized TiO2/CuxO electrodes is almost tripled from the TiO2 only electrode because the charge recombinations can be mitigated with the content optimized TiO2/CuxO electrodes. Therefore, the optimized TiO2/CuxO electrode results in the highest charge storing performance in the catholyte chamber, and the roles of vanadium redox species are also clearly demonstrated.

     

  • loading
  • [1]
    H. Jiang; J. Sun; L. Wei; M. Wu; W. Shyy and T. Zhao, Energy Storage Mater. 24 (2020) 529-540
    [2]
    D. Bak and J. H. Kim, J. Power Sources 389 (2018) 70-76
    [3]
    Y. Yu; W. Yan; X. Wang; P. Li; W. Gao; H. Zou; S. Wu and K. Ding, Adv. Mater. 30 (2018) 1705060
    [4]
    M. Xing; B. Qiu; M. Du; Q. Zhu; L. Wang and J. Zhang, Adv. Funct. Mater. 27 (2017) 1702624
    [5]
    S. Kahng; H. Yoo and J. H. Kim, Adv. Powder Technol. 31 (2020) 11-28
    [6]
    J. H. Kim, Clean Technology 19 (2013) 191-200
    [7]
    Z. Wei; D. Liu; C. Hsu and F. Liu, Electrochem. commun. 45 (2014) 79-82
    [8]
    Y. Shen; Z. Wei; D. Liu; H. Almakrami and F. Liu, Mater. Res. Bull. 96 (2017) 431-436
    [9]
    Z. Wei; Y. Shen; D. Liu and F. Liu, Scientific reports 7 (2017) 1-9
    [10]
    D. Liu; Z. Wei; C.-j. Hsu; Y. Shen and F. Liu, Electrochim. Acta 136 (2014) 435-441
    [11]
    C. Flox; S. Murcia-Lopez; N. M. Carretero; C. Ros; J. R. Morante and T. Andreu, ChemSusChem 11 (2018) 125-129
    [12]
    K. Beyer; J. Grosse Austing; B. Satola; T. Di Nardo; M. Zobel and C. Agert, ChemSusChem (2020) 2066-2071
    [13]
    H. Zhou; L. Ding; T. Fan; J. Ding; D. Zhang and Q. Guo, Appl. Catal. B. 147 (2014) 221-228
    [14]
    G. Zhao; K. Rui; S. X. Dou and W. Sun, Adv. Funct. Mater. 28 (2018) 1803291
    [15]
    J. Chu; X. Han; Z. Yu; Y. Du; B. Song and P. Xu, ACS Appl. Mater. Interfaces 10 (2018) 20404-20411
    [16]
    J. Deng; H. Li; J. Xiao; Y. Tu; D. Deng; H. Yang; H. Tian; J. Li; P. Ren and X. Bao, Energy Environ. Sci. 8 (2015) 1594-1601
    [17]
    Y. Shi; Y. Zhou; D.-R. Yang; W.-X. Xu; C. Wang; F.-B. Wang; J.-J. Xu; X.-H. Xia and H.-Y. Chen, J. Am. Chem. Soc. 139 (2017) 15479-15485
    [18]
    H. Lin; N. Liu; Z. Shi; Y. Guo; Y. Tang and Q. Gao, Adv. Funct. Mater. 26 (2016) 5590-5598
    [19]
    A. Galinska and J. Walendziewski, Energy Fuels 19 (2005) 1143-1147
    [20]
    K. Takanabe; K. Kamata; X. Wang; M. Antonietti; J. Kubota and K. Domen, Phys. Chem. Chem. Phys. 12 (2010) 13020-13025
    [21]
    X. Zhou; F. Li; H. Li; B. Zhang; F. Yu and L. Sun, ChemSusChem 7 (2014) 2453-2456
    [22]
    S.-Y. Lee and S.-J. Park, J. Ind. Eng. Chem. 19 (2013) 1761-1769
    [23]
    T. Choi; J.-S. Kim and J. H. Kim, Adv. Powder Technol. 27 (2016) 2061-2065
    [24]
    T. Choi; J.-S. Kim and J. H. Kim, Adv. Powder Technol. 27 (2016) 347-353
    [25]
    F. Ling; W. Li and L. Ye, Appl. Surf. Sci. 473 (2019) 386-392
    [26]
    R. Marschall and L. Wang, Catal. Today 225 (2014) 111-135
    [27]
    D. Dvoranova; V. Brezova; M. Mazur and M. A. Malati, Appl. Catal. B. 37 (2002) 91-105
    [28]
    U. Akpan and B. Hameed, Appl. Catal. A. Gen. 375 (2010) 1-11
    [29]
    H. Yoo; S. Kahng and J. H. Kim, Sol. Energy Mater. Sol. Cells 204 (2020) 110211
    [30]
    P. Zhou; J. Yu and M. Jaroniec, Adv. Mater. 26 (2014) 4920-4935
    [31]
    Z. Xie; Y. Feng; F. Wang; D. Chen; Q. Zhang; Y. Zeng; W. Lv and G. Liu, Appl. Catal. B. 229 (2018) 96-104
    [32]
    S. Sato; R. Nakamura and S. Abe, Appl. Catal. A. Gen. 284 (2005) 131-137
    [33]
    S. Peng; Y. Cao; F. Zhou; Z. Xu and Y. Li, Appl. Surf. Sci. 487 (2019) 315-321
    [34]
    M. Shakeel; M. Arif; G. Yasin; B. Li and H. D. Khan, Appl. Catal. B. 242 (2019) 485-498
    [35]
    Y. Liu; Z. Kang; S. Zhang; Y. Li; H. Wu; J. Wu; P. Wu; Z. Zhang; Q. Liao and Y. Zhang, Inorg. Chem. Front. 5 (2018) 1533-1539
    [36]
    H. Almakrami; Z. Wei; G. Lin; X. Jin; E. Agar and F. Liu, Electrochim. Acta (2020) 136368
    [37]
    Y. Lin; H. Feng; R. Chen; D. Ye; B. Zhang; Y. Yu and J. Li, Sci. China Technol. Sci. 62 (2019) 1628-1635
    [38]
    D. Liu; W. Zi; S. D. Sajjad; C. Hsu; Y. Shen; M. Wei and F. Liu, ACS Catal. 5 (2015) 2632-2639
    [39]
    B. Attarimashalkoubeh; A. Prakash; S. Lee; J. Song; J. Woo; S. H. Misha; N. Tamanna and H. Hwang, ECS J. Solid State Sci. Technol. 3 (2014) P120
    [40]
    K. Sakamoto; F. Hayashi; K. Sato; M. Hirano and N. Ohtsu, Appl. Surf. Sci. (2020) 146729
    [41]
    H. O. Dogan; B. K. Urhan; E. Cepni and M. Eryigit, Microchem. J. 150 (2019) 104157
    [42]
    M. Gustavsson; H. Ekstrom; P. Hanarp; L. Eurenius; G. Lindbergh; E. Olsson and B. Kasemo, J. Power Sources 163 (2007) 671-678
    [43]
    J. Wan; L. Tao; B. Wang; J. Zhang; H. Wang and P. D. Lund, J. Power Sources 438 (2019) 227012
    [44]
    K. Munawar; M. A. Mansoor; W. J. Basirun; M. Misran; N. M. Huang and M. Mazhar, RSC advances 7 (2017) 15885-15893
    [45]
    A. Kumtepe; C. T. Altaf; N. S. Sahsuvar; N. Abdullayeva; E. Koseoglu; M. Sankir and N. D. Sankir, ACS Appl. Energy Mater. 3 (2020) 3127-3133
    [46]
    R. Pruna; M. Lopez and F. Teixidor, Nanoscale 11 (2019) 276-284
    [47]
    T.-T. Gu; X.-M. Wu; Y.-M. Dong and G.-L. Wang, J. Electroanal. Chem. (Lausanne) 759 (2015) 27-31
    [48]
    D. M. Kabtamu; J.-Y. Chen; Y.-C. Chang and C.-H. Wang, J. Power Sources 341 (2017) 270-279
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (260) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return