Volume 7 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Juan Zhao, Min Han, Zhanhui Wang, Lixia Ling, Riguang Zhang, Baojun Wang. The regulating effect of doping Cu on the catalytic performance of CO oxidative coupling to DMO on PdxCuy/GDY: A DFT study. Green Energy&Environment, 2022, 7(4): 742-754. doi: 10.1016/j.gee.2020.11.011
Citation: Juan Zhao, Min Han, Zhanhui Wang, Lixia Ling, Riguang Zhang, Baojun Wang. The regulating effect of doping Cu on the catalytic performance of CO oxidative coupling to DMO on PdxCuy/GDY: A DFT study. Green Energy&Environment, 2022, 7(4): 742-754. doi: 10.1016/j.gee.2020.11.011

The regulating effect of doping Cu on the catalytic performance of CO oxidative coupling to DMO on PdxCuy/GDY: A DFT study

doi: 10.1016/j.gee.2020.11.011
  • Rely on the density functional theory (DFT) calculation, the catalytic performance of PdxCuy/GDY (x = 1, 2, 3, 4; x + y ≤ 4) for CO oxidative coupling reaction was obtained. The Pdx/GDY (x = 1, 2, 3, 4) are not ideal catalyst for dimethyl oxalate (DMO) formation because by-product dimethyl carbonate (DMC) is easily formed on Pd1/GDY and Pd2/GDY, and high activation energies are needed on Pd3/GDY and Pd4/GDY. Therefore the second metal Cu is doped to regulate the performance of Pdx/GDY (x = 1, 2, 3, 4). Doping Cu not only improve the activity of DMO formation, but more importantly, controlling the ratio of Cu:Pd can effectively regulate the selectivity of DMO. Thus taking into account the activity and selectivity of the reaction for the preparation of DMO by CO oxidative coupling, the Pd1Cu1/GDY and Pd1Cu2/GDY with the activation energies of 105.2 and 99.2 kJ mol-1 to generate DMO show excellent catalytic activity and high DMO selectivity, which are considered as good catalysts for CO oxidative coupling. The differential charge density analysis shows the decrease in the charge density of metal clusters is an important reason for improving the selectivity of the catalyst.

     

  • loading
  • [1]
    S. Uchiumi, K. Ataka, T. Matsuzaki, J. Organomet. Chem. 576 (1999) 279-289
    [2]
    S. Y. Peng, Z. N. Xu, Q. S. Chen, Z. Q. Wang, D. M. Lv, J. Sun, Y. Chen, G. C. Guo, ACS Catal. 5 (2015) 4410-4417
    [3]
    C. Wang, Y. Jia, Z. Zhang, G. Zhao, Y. Liu, Y. Lu, Appl. Surf. Sci. 478 (2019) 840-845
    [4]
    E. Jin, L. He, Y. Zhang, A. R. Richard, M. Fan, RSC Adv. 4 (2014) 48901-48904
    [5]
    Q. Li, Z. Zhou, R. Chen, B. Sun, L. Qiao, Y. Yao, K. Wu, Phys. Chem. Chem. Phys. 17 (2015) 9126-9134
    [6]
    L. Ling, Y. Cao, M. Han, P. Liu, R. Zhang, B. Wang, Phys. Chem. Chem. Phys. 8 (2020) 4549-4560
    [7]
    S. Y. Peng, Z. N. Xu, Q. S. Chen, Z. Q. Wang, Y. Chen, D. M. Lv, G. Lu, G. C. Guo, Catal. Sci. & Technol. 4 (2014) 1925
    [8]
    Z. N. Xu, J. Sun, C. S. Lin, X. M. Jiang, Q. S. Chen, S. Y. Peng, M. S. Wang, G. C. Guo, ACS Catal. 3 (2013) 118-122
    [9]
    B. Han, X. Feng, L. Ling, M. Fan, P. Liu, R. Zhanga, B. Wang, Phys. Chem. Chem. Phys. 20 (2018) 7317
    [10]
    L. Ling, H. Lin, B. Han, P. Liu, R. Zhang, B. Wang, Mol. Catal. 470 (2019) 19-31
    [11]
    J. A. Alonso, Chem. Rev. 100 (2000) 637-678
    [12]
    M. Boronat, Leyva-Pérez. Antonio, A. Corma, Accounts Chem. Res. 47 (2014) 834-844
    [13]
    L. Liu, A. Corma, Chem. Rev. 118 (2018) 4981-5079
    [14]
    O. Lopez-Acevedo, K. A. Kacprzak, J. Akola1, H. Hakkinen, Nat. Chem. 2 (2010) 329-334
    [15]
    T. He, L. Zhang, G. Kour, A. Du, J. CO2 Util. 37 (2020) 272-277
    [16]
    M. Pan, J. Wang, W. Fu, B. Chen, J. Lei, W. Chen, X. Duan, D. Chen, G. Qian, X. Zhou, Green Energy Environ. 5 (2020) 76-82
    [17]
    Y. Cao, L. Ling, H. Lin, M. Fan, P. Liu, R. Zhang, B. Wang, Comp. Mater. Sci. 159 (2019) 1-11
    [18]
    L. Ling, X. Feng, Y. Cao, P. Liu, M. Fan, R. Zhang, B. Wang, Mol. Catal. 453 (2018) 100-112
    [19]
    N. Holmberg, K. Laasonen, P. Peljo, Phys. Chem. Chem. Phys. 18 (2018) 2924
    [20]
    P. Ferrari, E. Janssens, Appl. Sci. 9 (2019) 16666
    [21]
    K. J. Taylor, C. L. Pettiette-Hall, O. Cheshnovsky, R. E. Smalley, J. Chem. Phys. 96 (1992) 3319-3329
    [22]
    H. Xiong, S. Lin, J. Goetze, P. Pletcher, H. Guo, L. Kovarik, K. Artyushkova, B. M. Weckhuysen, A. K. Datye, Angew. Chem. Int. Ed. 56 (2017) 8986-8991
    [23]
    S. Y. Peng, Z. N. Xu, Q. S. Chen, Y. M. Chen, J. Sun, Z. Q. Wang, M. S. Wang, G. C. Guo, Chem. Commun. 49 (2013) 5718-5720
    [24]
    X. Feng, L. Ling, Y. Cao, R. Zhang, M. Fan, B. Wang, J. Phys. Chem. C, 122 (2018) 1169-1179
    [25]
    R. Zhang, B. Zhao, L. Ling, A. Wang, C. K. Russelle, B. Wang, M. Fan, ChemCatChem 10 (2018) 2424-2432
    [26]
    K. A. Goulas, Y. Song, G. R. Johnson, J. P. Chen, A.A. G, Lars C. Grabow, F. D. Toste, Catal. Sci. Technol. 8 (2018) 314
    [27]
    P. Begum, R. C. Deka, Catal. Lett. 147 (2017) 581-591
    [28]
    E. Guan, C. Y. Fang, D. Yang, L. Wang, F. S. Xiao, B. C. Gates, Faraday Discuss. 208 (2018) 9-33
    [29]
    Q. Sun, N. Wang, R. Bai, Y. Hui, T. Zhang, D. A. Do, P. Zhang, L. Song, S. Miao, J. Yu, Adv. Sci. 6 (2019) 1802350
    [30]
    C. Qiu, Y. Wang, Y. Li, X. Sun, G. Zhang, Z. Yao, S. Deng, J. Wang, Green Energy Environ., (2020). https://doi.org/10.1016/j.gee.2020.04.012
    [31]
    Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, Y. Li, Nat. Commun. 9 (2018) 1-10
    [32]
    D. Malko, C. Neiss, F. Vines, A. Gorling, Physical review letters 108 (2012) 086804
    [33]
    Y. Li, Y. Li, Acta Phys. Chim. Sin. 34 (2018) 992-1013
    [34]
    H. Qi, P. Yu, Y. Wang, G. Han, H. Liu, Y. Yi, Y. Li, L. Mao. J. Am. Chem. Soc. 137 (2015) 5260-5263
    [35]
    J. Li, L. Zhong, L. Tong, Y. Yu, Q. Liu, S. Zhang, C. Yin, L. Qiao, S. Li, R. Si, J. Zhang, Adv. Funct. Mater. 29 (2019) 1905423
    [36]
    D. Ma, Z. Zeng, L. Liu, X. Huang, Y. Jia, J. Phys. Chem. C, 123(2019) 19066-19076
    [37]
    D. H. Xing, C. Q. Xu, Y. G. Wang, J. Li, J. Phys. Chem. C, 123 (2019) 10494-10500
    [38]
    H. Shen, Q. Sun, J. Phys. Chem. C, 123 (2019) 29776-29782
    [39]
    Z. Lu, S. Li, P. Lv, C. He, D. Ma, Z. Yang, Appl. Surf. Sci. 360 (2016) 1-7
    [40]
    X. Chen, P. Gao, L. Guo, Y. Wen, Y. Zhang, S. Zhang, J. Phys. Chem. Solids, 105 (2017) 61-65
    [41]
    T. Hussaina, B. Mortazavi, H. Bae, T. Rabczuk, H. Lee, A. Karton, Carbon, 147 (2019) 199-205
    [42]
    P. Panigrahi, A. K. Dhinakaran, S. R. Naqvi, R. Gollu, R. Ahuja, T. Hussain, Nanotechnology 29 (2018) 355401
    [43]
    B. Delley, J. Chem. Phys. 113 (2000) 7756-7764
    [44]
    B. Delley, J. Chem. Phys. 92 (1990) 508
    [45]
    I. H. Lee, R. M. Martin, Phys. Rev. B, 56 (1997) 7197
    [46]
    J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868
    [47]
    J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 102 (2009) 039902
    [48]
    S. Grimme, J. Comput. Chem. 27 (2006) 1787
    [49]
    W. Jankiewicz, R. Podeszwa, H. A. Witek, J. Chem. Theory Comput. 14 (2018) 5079-5089
    [50]
    K. Jiri; M. Angelos, J. Chem. Phys. 137 (2012) 120901
    [51]
    S. Grimme, J. Comput. Chem. 27 (2006) 1787-1799
    [52]
    W. J. Hehre, Acc. Chem. Res. 9 (1976) 399-406
    [53]
    W. J. Hehre, L. Radom, P. R. Schleyer, J. A. Pople, J. Wiley, N. York, J. Comput. Chem. 7 (1986) 379-383
    [54]
    A. Bergner, M. Dolg, W. Kuchle, H. Stoll, H. Preu, Mol. Phys. 80 (1993) 1431-1441
    [55]
    N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, J. Andzelm, Comp. Mater. Sci. 28 (2003) 250-258
    [56]
    T. A. Halgren, W. N. Lipscomb, Chem. Phys. Lett. 49 (1997) 225-232
    [57]
    J. Xi, Y. Nakamura, T. Zhao, D. Wang, Z. Shuai, Acta Phys. Chim. Sin. 34 (2018) 961-976
    [58]
    A. Seif, M. J. Lopez, A. Granja-DelRio, K. Azizi, J. A. Alonso, Phys. Chem. Chem. Phys. 19 (2017) 19094-19102
    [59]
    M. Karabacak, S. Ozcelik, Z. B. Guvenc, Surf. Sci. 507 (2002) 636-642
    [60]
    B. Kalita, R.C. Deka, Bull. Catal. Soc. India 5 (2006) 110-120
    [61]
    C. J. Cassady, B. S. Freiser, J. Am. Chem. Soc. 107 (1985) 1566-1573
    [62]
    Z. W. Chen, Z. Wen, Q. Jiang, J. Phys. Chem. C, 121 (2017) 3463-3468
    [63]
    R. Ku, G. Yu, J. Gao, X. Huang, W. Chen. Phys. Chem. Chem. Phys. 22 (2020) 3254-3263
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (150) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return