Volume 7 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Guangkai Li, Haeseong Jang, Zijian Li, Jia Wang, Xuqiang Ji, Min Gyu Kim, Xien Liu, Jaephil Cho. Oxygen-deficient SnO2 nanoparticles with ultrathin carbon shell for efficient electrocatalytic N2 reduction. Green Energy&Environment, 2022, 7(4): 672-679. doi: 10.1016/j.gee.2020.11.004
Citation: Guangkai Li, Haeseong Jang, Zijian Li, Jia Wang, Xuqiang Ji, Min Gyu Kim, Xien Liu, Jaephil Cho. Oxygen-deficient SnO2 nanoparticles with ultrathin carbon shell for efficient electrocatalytic N2 reduction. Green Energy&Environment, 2022, 7(4): 672-679. doi: 10.1016/j.gee.2020.11.004

Oxygen-deficient SnO2 nanoparticles with ultrathin carbon shell for efficient electrocatalytic N2 reduction

doi: 10.1016/j.gee.2020.11.004
  • For high-efficiency NH3 synthesis via ambient-condition electrohydrogenation of inert N2, it is pivotal to ingeniously design an active electrocatalyst with multiple features of abundant surfacial deficiency, good conductivity and large surface area. Here, oxygen-deficient SnO2 nanoparticles encapsulated by ultrathin carbon layer (d-SnO2@C) are developed by hydrothermal deposition coupled with annealing process, as promising catalysts for ambient electrocatalytic N2 reduction. d-SnO2@C exhibits high activity and excellent selectivity for electrocatalytic conversion of N2 to NH3 in acidic electrolytes, with Faradic efficiency as high as 12.7% at -0.15 V versus the reversible hydrogen electrode (RHE) and large NH3 yield rate of 16.68 μg h-1 mgcat-1 at -0.25 V vs. RHE in 0.1 mol L-1 HCl. Benefiting from the structural superiority of enhanced charge transfer efficiency and optimized surface states, d-SnO2@C also achieves excellent long-term stability.

     

  • These authors contributed equally to this work.
  • loading
  • [1]
    B. H. R. Suryanto, H. L. Du, D. Wang, J. Chen, A. N. Simonov, D. R. MacFarlane, Nature Catal. 2 (2019) 290-296
    [2]
    Y. Fang, Z. Liu, J. Han, Z. Jin, Y. Han, F. Wang, Y. Niu, Y. Wu, Y. Xu, Adv. Energy Mater. 9 (2019) 1803406
    [3]
    E. E. Stueeken, R. Buick, B. M. Guy, M. C. Koehler, Nature 520 (2015) 666-669
    [4]
    J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, Science 360 (2018) eaar6611
    [5]
    R. Zhao, H. Xie, L. Chang, X. Zhang, X. Sun, J. Energ. Chem. 1 (2019) 100011
    [6]
    J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nature Geosci. 1 (2008) 636-639
    [7]
    X. Chen, Y. Guo, X. Du, Y. Zeng, J. Chu, C. Gong, J. Huang, C. Fan, X. Wang, J. Xiong, Adv. Energy Mater. 10 (2020) 1903172
    [8]
    H. Jin, L. Li, X. Liu, C. Tang, W. Xu, S. Chen, L. Song, Y. Zheng, S. Z. Qiao, Adv. Mater. 31 (2019) e1902709
    [9]
    J. Wang, B. Huang, Y. Ji, M. Sun, T. Wu, R. Yin, X. Zhu, Y. Li, Q. Shao, X. Huang, Adv. Mater. 32 (2020) 1907112
    [10]
    W. Wang, S. Sun, Q. An, L. Zhang, J. Liu, I. Goddard, A. Willioam, J. Mater. Chem. A. 5 (2017) 201-209
    [11]
    V. Fourmond, C. J. Leger, Angew. Chem. Int. Ed. 56 (2017) 4388-4390
    [12]
    Y. Shiraishi, M. Hashimoto, K. Chishiro, K. Moriyama, S. Tanaka, T. Hirai, J. Am. Chem. Soc. 142 (2020) 7574-7583
    [13]
    X. Liu, H. Jang, P. Li, J. Wang, Angew. Chem. Int. Ed. 58 (2019) 13329-13334
    [14]
    N. Cao, Z. Chen, K. Zang, J. Xu, G. Zheng, Nature Commun. 10 (2019) 2877
    [15]
    K. Kugler, M. Luhn, J. A. Schramm, K. Rahimi, M. Wessling, Phys. Chem. Chem. phys. 17 (2015) 3768-3782
    [16]
    H.-M. Liu, S. H. Han, Y. Zhao, Y. Y. Zhu, X.-L. Tian, J.-H. Zeng, J.-X. Jiang, B. Y. Xia, Y. Chen, J. Mater. Chem. A. 6 (2018) 3211-3217
    [17]
    M.-M. Shi, D. Bao, B.-R. Wulan, Y.-H. Li, Y.-F. Zhang, J.-M. Yan, Q. J. Jiang, Adv. Mater. 29 (2017) 1606550
    [18]
    H. Huang, L. Xia, X. Shi, A. M. Asiri, X. Sun, Chem. Commun. 54 (2018) 11427-11430
    [19]
    M. Nazemi, S. R. Panikkanvalappil, M. A. El-Sayed, Nano. Energy 49 (2018) 316-323
    [20]
    X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. M. Asiri, L. Chen, B. Tang, X. Sun, Adv. Energy Mater. 8 (2018) 1801357
    [21]
    X. Xu, X. Tian, B. Sun, Z. Liang, H. Cui, J. Tian, M. Shao, Appl. Catal. B 272 (2020) 118984
    [22]
    S. Zhang, M. Jin, T. Shi, M. Han, Q. Sun, Y. Lin, Z. Ding, L. R. Zheng, G. Wang, Y. Zhang, H. Zhang, H. Zhao, Angew. Chem. Int. Ed. 59 (2020) 13423-13429
    [23]
    L. Zeng, X. Li, S. Chen, J. Wen, W. Huang, J. Mater. Chem. A 8 (2020) 7339-7349
    [24]
    C. Guo, X. Liu, L. Gao, X. Kuang, Appl. Catal. B 263 (2019) 118296
    [25]
    X. Zhao, X. Zhang, Z. Xue, W. Chen, Z. Zhou, J. Mater. Chem. A 7 (2019) 27417-27422
    [26]
    J. Zhang, Y. Ji, P. Wang, Q. Sha, Adv. Funct. Mater. 30 (2019) 1906579
    [27]
    C. Li, Y. Fu, Z. Wu, J. Xia, Nanoscale 11 (2019) 12997-13006
    [28]
    L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang, X. Sun, Adv. Mater. 30 (2018) 1800191
    [29]
    L. Zhang, M. Cong, X. Ding, Y. Jin, F. Xu, Y. Wang, L. Chen, L. Zhang, Angew. Chem. Int Ed. 59 (2020) 10888-10893
    [30]
    L. Zhang, X. Ren, Y. Luo, X. Shi, A. M. Asiri, X. Sun, Chem. Commun. 54 (2018) 12966-12969
    [31]
    Y.-p. Liu, Y.-b. Li, H. Zhang, Inorg. Chem. 58 (2019) 10424-10431
    [32]
    R. Ge, L. Li, J. Su, Y. Lin, Z. Tian, L. Chen, Adv. Energy Mater. 9 (2019) 1901313
    [33]
    J. Su, R. Ge, K. Jiang, Y. Dong, F. Hao, Z. Tian, G. Chen, L. Che, Adv. Mater. 30 (2018) 1801351
    [34]
    J. Su, R. Ge, K. Jiang, Y. Dong, F. Hao, Z. Tian, G. Chen, L. Chen, Appl. Catal. B-Environ. 267 (2020) 118693
    [35]
    Z. Han, C. Choi, S. Hong, T.-S. Wu, Y. Soo, Y. Jung, J. Qiu, Z. Sun, Appl. Catal. B-Environ. 257 (2019) 117896
    [36]
    Z. Sun, R. Huo, C. Choi, S. Hong, T.-S. Wu, J. Qiu, C. Yan, Z. Han, Y. Liu, Y.-L. Soo, Y. Jung, Nano Energy 62 (2019) 869-875
    [37]
    A. Dutta, A. Kuzume, M. Rahama, S. Vesztergom, P. Broekmann, ACS Catal. 5 (2015) 7498-7502
    [38]
    Y. Xu, L. Zheng, C. Yang, W. Zheng, X. Liu, J. Zhang, ACS Appl. Mater. Interfaces. 12 (2020) 20704-20713
    [39]
    Q. Zeng, Y. Cui, L. Zhu, Y. Yao, Mater. Sci. Semicond. Process. 111 (2020) 104962
    [40]
    X. Qu, L. Shen, Y. Mao, J. Lin, Y. Li, G. Li, Y. Zhang, Y. Jiang, S. Sun, ACS Appl. Mater. Interfaces. 11 (2019) 31869-31877
    [41]
    C. J. Pelliccione, E. V. Timofeeva, C. U. Segre, J. Phys. Chem. C 120 (2016) 5331-5339
    [42]
    Q. Shi, Y. Ji, W. Chen, Y. Zhu, J. Li, H. Liu, Z. Li, S. Tian, L. Wang, Z. Zhong, L. Wang, J. Ma, Y. Li, F. Su, Natl. Sci. Re. 7 (2020) 600-608
    [43]
    Y. Orikasa, T. Ina, T. Nakao, A. Mineshige, K. Amezawa, M. Oishi, H. Arai, Z. Ogumi, Y. Uchimoto, Phys. Chem. Chem. Phys. 13 (2011) 16637-16643
    [44]
    Y. Zhu, L. Zhang, B. Zhao, H. Chen, X. Liu, R. Zhao, X. Wang, J. Liu, Y. Chen, M. Liu, Adv. Funct. Mater. 29 (2019) 1901783
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (203) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return