Muhammad Zubair, Estelle Marie M. Vanhaecke, Ingeborg-Helene Svenum, Magnus Rønning, Jia Yang. Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation. Green Energy&Environment, 2020, 5(4): 461-472. doi: 10.1016/j.gee.2020.10.017
Citation: Muhammad Zubair, Estelle Marie M. Vanhaecke, Ingeborg-Helene Svenum, Magnus Rønning, Jia Yang. Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation. Green Energy&Environment, 2020, 5(4): 461-472. doi: 10.1016/j.gee.2020.10.017

Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation

doi: 10.1016/j.gee.2020.10.017
  • To achieve efficient photocatalytic H2 generation from water using earth-abundant and cost-effective materials, a simple synthesis method for carbon-doped CdS particles wrapped with graphene (C-doped CdS@G) is reported. The doping effect and the application of graphene as co-catalyst for CdS is studied for photocatalytic H2 generation. The most active sample consists of CdS and graphene (CdS-0.15G) exhibits promising photocatalytic activity, producing 3.12 mmol g−1 h−1 of H2 under simulated solar light which is ~4.6 times superior than pure CdS nanoparticles giving an apparent quantum efficiency (AQY) of 11.7%. The enhanced photocatalytic activity for H2 generation is associated to the narrowing of the bandgap, enhanced light absorption, fast interfacial charge transfer, and higher carrier density (ND) in C-doped CdS@G samples. This is achieved by C doping in CdS nanoparticles and the formation of a graphene shell over the C-doped CdS nanoparticles. After stability test, the spent catalysts sample was also characterized to investigate the nanostructure.

     

  • loading
  • [1]
    H. Wang, Z. Jin, X. Hao, Dalt. Trans. 48 (2019) 4015-4025.
    [2]
    T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 43 (2014) 7520-7535.
    [3]
    V.M. Daskalaki, M. Antoniadou, G. Li Puma, D.I. Kondarides, P. Lianos, Environ. Sci. Technol. 44 (2010) 7200-7205.
    [4]
    Z.-R. Tang, B. Han, C. Han, Y.-J. Xu, J. Mater. Chem. A 5 (2017) 2387-2410.
    [5]
    Z. Zhang, J. Zhang, N. Chen, L. Qu, Energy Environ. Sci. 5 (2012) 8869.
    [6]
    Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, J. Am. Chem. Soc. 133 (2011) 10878-10884.
    [7]
    W. Han, D. Li, M. Zhang, H. Ximin, X. Duan, S. Liu, S. Wang, J. Hazard. Mater. 395 (2020) 122695.
    [8]
    P. Zeng, Q. Zhang, T. Peng, X. Zhang, Phys. Chem. Chem. Phys. 13 (2011) 21496.
    [9]
    C. Zhang, J. Lai, J. Hu, RSC Adv. 5 (2015) 15110-15117.
    [10]
    J. Shi, H. Cui, Z. Liang, X. Lu, Y. Tong, C. Su, H. Liu, Energy Environ. Sci. 4 (2011) 466-470.
    [11]
    H.-Y. Chen, S. Maiti, D.H. Son, ACS Nano 6 (2012) 583-591.
    [12]
    J.-W. Shi, D. Sun, Y. Zou, D. Ma, C. He, X. Ji, C. Niu, Chem. Eng. J. 364 (2019) 11-19.
    [13]
    R. Shi, H.-F. Ye, F. Liang, Z. Wang, K. Li, Y. Weng, Z. Lin, W.-F. Fu, C.-M. Che, Y. Chen, Adv. Mater. 30 (2018) 1705941.
    [14]
    M. Luo, Y. Liu, J. Hu, H. Liu, J. Li, ACS Appl. Mater. Interfaces 4 (2012) 1813-1821.
    [15]
    P. Wu, J.-B. Pan, X.-L. Li, X. Hou, J.-J. Xu, H.-Y. Chen, Chem. - A Eur. J. 21 (2015) 5129-5135.
    [16]
    R. Chauhan, A. Kumar, R.P. Chaudhary, Appl. Surf. Sci. 270 (2013) 655-660.
    [17]
    J. Wang, T. Xia, L. Wang, X. Zheng, Z. Qi, C. Gao, J. Zhu, Z. Li, H. Xu, Y. Xiong, Angew. Chemie Int. Ed. 57 (2018) 16447-16451.
    [18]
    D. Yang, S. Xu, Q. Chen, W. Wang, Colloids Surfaces A Physicochem. Eng. Asp. 299 (2007) 153-159.
    [19]
    Y. Yang, D. Ni, Y. Yao, Y. Zhong, Y. Ma, J. Yao, RSC Adv. 5 (2015) 93635-93643.
    [20]
    X. Zhang, J. Qin, R. Hao, L. Wang, X. Shen, R. Yu, S. Limpanart, M. Ma, R. Liu, J. Phys. Chem. C 119 (2015) 20544-20554.
    [21]
    G. Poungchan, B. Ksapabutr, M. Panapoy, Mater. Des. 89 (2016) 137-145.
    [22]
    Y. Liu, Y.-X. Yu, W.-D. Zhang, J. Alloys Compd. 569 (2013) 102-110.
    [23]
    J.C. Orlianges, C. Champeaux, P. Dutheil, A. Catherinot, T.M. Mejean, Thin Solid Films 519 (2011) 7611-7614.
    [24]
    M. Zubair, H. Kim, A. Razzaq, C.A. Grimes, S. -I. In, J. CO2 Util. 26 (2018) 70-79.
    [25]
    B. He, R. Liu, J. Ren, C. Tang, Y. Zhong, Y. Hu, Langmuir 33 (2017) 6719-6726.
    [26]
    M. Zubair, I.-H. Svenum, M. Roenning, J. Yang, Catal. Today 328 (2019) 15-20.
    [27]
    Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Carbon N. Y. 50 (2012) 4738-4743.
    [28]
    S. Wang, Z.-G. Chen, I. Cole, Q. Li, Carbon N. Y. 82 (2015) 304-313.
    [29]
    M. Zubair, I.-H. Svenum, M. Roenning, J. Yang, Catalysts 10 (2020) 358.
    [30]
    M. Zubair, I.-H. Svenum, M. Roenning, J. Yang, Catalysts 10 (2020) 358.
    [31]
    S.J. Hong, S. Lee, J.S. Jang, J.S. Lee, Energy Environ. Sci. 4 (2011) 1781-1787.
    [32]
    K. Gelderman, L. Lee, S.W. Donne, J. Chem. Educ. 84 (2007) 685-688.
    [33]
    Y. V. Kuznetsova, A.A. Rempel, Inorg. Mater. 51 (2015) 215-219.
    [34]
    S.W. Park, C.P. Huang, J. Colloid Interface Sci. 117 (1987) 431-441.
    [35]
    S. Liu, M.-Q. Yang, Y.-J. Xu, J. Mater. Chem. A 2 (2014) 430-440.
    [36]
    H. Liu, T. Lv, X. Wu, C. Zhu, Z. Zhu, Appl. Surf. Sci. 305 (2014) 242-246.
    [37]
    L. Kuai, Y. Zhou, W. Tu, P. Li, H. Li, Q. Xu, L. Tang, X. Wang, M. Xiao, Z. Zou, RSC Adv. 5 (2015) 88409-88413.
    [38]
    G. Chen, S. Wu, L. Hui, Y. Zhao, J. Ye, Z. Tan, W. Zeng, Z. Tao, L. Yang, Y. Zhu, Sci. Rep. 6 (2016) 19028.
    [39]
    C. Chen, Q.-H. Yang, Y. Yang, W. Lv, Y. Wen, P.-X. Hou, M. Wang, H.-M. Cheng, Adv. Mater. 21 (2009) 3007-3011.
    [40]
    S.E. Haque, B. Ramdas, A. Sheela, N. Padmavathy, Micro & Nano Lett. 9 (2014) 731-735.
    [41]
    Y. Liang, L. Zhai, X. Zhao, D. Xu, J. Phys. Chem. B 109 (2005) 7120-7123.
    [42]
    M.E. Khan, M.M. Khan, M.H. Cho, J. Colloid Interface Sci. 482 (2016) 221-232.
    [43]
    M.E. Khan, M.M. Khan, M.H. Cho, RSC Adv. 5 (2015) 26897-26904.
    [44]
    A. Pulido, P. Concepcion, M. Boronat, C. Botas, P. Alvarez, R. Menendez, A. Corma, J. Mater. Chem. 22 (2012) 51-56.
    [45]
    A.A. Dubale, W.-N. Su, A.G. Tamirat, C.-J. Pan, B.A. Aragaw, H.-M. Chen, C.-H. Chen, B.-J. Hwang, J. Mater. Chem. A 2 (2014) 18383-18397.
    [46]
    M. Kruk, M. Jaroniec, Chem. Mater. 13 (2001) 3169-3183.
    [47]
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57 (1985) 603-619.
    [48]
    Y. Wang, Y. Wang, R. Xu, J. Phys. Chem. C 117 (2013) 783-790.
    [49]
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15 (1966) 627-637.
    [50]
    L. Zhang, X. Fu, S. Meng, X. Jiang, J. Wang, S. Chen, J. Mater. Chem. A 3 (2015) 23732-23742.
    [51]
    S. Liu, Z. Chen, N. Zhang, Z.-R. Tang, Y.-J. Xu, J. Phys. Chem. C 117 (2013) 8251-8261.
    [52]
    L. Wu, J.C. Yu, X. Fu, J. Mol. Catal. A Chem. 244 (2006) 25-32.
    [53]
    H.H.-Y. Wei, C.M. Evans, B.D. Swartz, A.J. Neukirch, J. Young, O. V. Prezhdo, T.D. Krauss, Nano Lett. 12 (2012) 4465-4471.
    [54]
    N. Zhang, S. Liu, X. Fu, Y.-J. Xu, J. Mater. Chem. 22 (2012) 5042.
    [55]
    M. Fantauzzi, B. Elsener, D. Atzei, A. Rigoldi, A. Rossi, RSC Adv. 5 (2015) 75953-75963.
    [56]
    J.-Y. Kim, Y.J. Jang, J. Park, J. Kim, J.S. Kang, D.Y. Chung, Y.-E. Sung, C. Lee, J.S. Lee, M.J. Ko, Appl. Catal. B Environ. 227 (2018) 409-417.
    [57]
    S.A. Bakar, C. Ribeiro, RSC Adv. 6 (2016) 36516-36527.
    [58]
    Y. Zhou, G. Chen, Y. Yu, L. Zhao, Q. Yu, Q. He, Catal. Sci. Technol. 6 (2016) 1033-1041.
    [59]
    Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc. 134 (2012) 6575-6578.
    [60]
    Y. Zheng, A. Wang, Z. Wang, L. Fu, F. Peng, Mater. Res. 20 (2016) 15-20.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (197) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return