Citation: | Yiru Zou, Chao Wang, Hanxiang Chen, Haiyan Ji, Qian Zhu, Wenshu Yang, Linlin Chen, Zhigang Chen, Wenshuai Zhu. Scalable and facile synthesis of V2O5 nanoparticles via ball milling for improved aerobic oxidative desulfurization. Green Energy&Environment, 2021, 6(2): 169-175. doi: 10.1016/j.gee.2020.10.005 |
[1] |
S.H. Xun, W.S. Zhu, Y.H. Chang, H.P. Li, M. Zhang, W. Jiang, D. Zheng, Y.J. Qin, H.M. Li, Chem. Eng. J. 288 (2016) 608-617.
|
[2] |
Y. Song, W. Lin, X.C. Guo, L.L. Dong, X.D. Mu, H.P. Tian, L. Wang, Green Energy Environ.. 4 (2019) 75-82.
|
[3] |
R. Ghubayra, C. Nuttall, S. Hodgkiss, M. Craven, E.F. Kozhevnikova, I.V. Kozhevnikov, Appl. Catal. B Environ. 253 (2019) 309-316.
|
[4] |
M. Zhang, J.Q. Liu, H.P. Li, Y.C. Wei, Y.J. Fu, W.Y. Liao, L.H. Zhu, G.Y. Chen, W.S. Zhu, H.M. Li, Appl. Catal. B Environ. 271 (2020) 118936.
|
[5] |
J. Xiong, H.M. Li, L. Yang, J. Luo, Y.H. Chao, J.Y. Pang, W.S. Zhu, AIChE J.. 63 (2017) 3463-3469.
|
[6] |
H.P. Li, B.B. Zhang, W. Jiang, W.S. Zhu, M. Zhang, C. Wang, J.Y. Pang, H.M. Li, Green Energy Environ. 4 (2019) 38-48.
|
[7] |
M.A. Astle, G.A. Rance, H.J. Loughlin, T.D. Peters, A.N. Khlobystov, Adv. Funct. Mater. 29 (2019) 1808092.
|
[8] |
E. Rafiee, S. Rezaei, J. Taiwan Inst. Chem. Eng. 61 (2016) 174-180.
|
[9] |
E. Rafiee, N. Nobakht, Korean J. Chem. Eng. 33 (2015) 132-139.
|
[10] |
X.Y. Zeng, X.Y. Xiao, J.Y. Chen, H.L. Wang, Appl. Catal. B Environ. 248 (2019) 573-586.
|
[11] |
S.H. Xun, W. Jiang, T. Guo, M.Q. He, R.L. Ma, M. Zhang, W.S. Zhu, H.M. Li, J. Colloid Interface Sci. 534 (2019) 239-247.
|
[12] |
W. Jiang, K. Zhu, H.P. Li, L.H. Zhu, M.Q. Hua, J. Xiao, C. Wang, Z.Z. Yang, G.Y. Chen, W.S. Zhu, H.M. Li, S. Dai, Chem. Eng. J. 394 (2020) 124831.
|
[13] |
W. Jiang, H. Jia, H.P. Li, L.H. Zhu, R.M. Tao, W.S. Zhu, H.M. Li, S. Dai, Green Chem.. 21 (2019) 3074-3080.
|
[14] |
S.Y. Dou, R. Wang, Chem. Eng. J. 369 (2019) 64-76.
|
[15] |
R. Abazari, S. Sanati, A. Morsali, A. Slawin, C.L. Carpenter-Warren, ACS Appl. Mater. Interfaces 11 (2019) 14759-14773.
|
[16] |
X.Y. Yao, C. Wang, H. Liu, H.P. Li, P.W. Wu, L. Fan, H.M. Li, W.S. Zhu, Ind. Eng. Chem. Res. 58 (2018) 863-871.
|
[17] |
C. Wang, W. Jiang, H.X. Chen, L.H. Zhu, J. Luo, W.S. Yang, G.Y. Chen, Z.G. Chen, W.S. Zhu, H.M. Li, Chin. J. Catal. 42 (2021) 557-562.
|
[18] |
P.W. Wu, W.S. Zhu, Y.H. Chao, J.S. Zhang, P.F. Zhang, H.Y. Zhu, C.F. Li, Z.G. Chen, H.M. Li, S. Dai, Chem. Commun. 52 (2016) 144-147.
|
[19] |
Y. Nakagawa, K. Tokuma, Y. Nakaji, A. Miyagawa, M. Tamura, K. Tomishige, Appl. Catal. A Gen. 569 (2019) 149-156.
|
[20] |
J. Tang, M.K. Cai, G.Q. Xie, S.X. Bao, S.J. Ding, X.X. Wang, J.Z. Tao, G.Q. Li, Chem. Eur J. 26 (2020) 4333-4340.
|
[21] |
M.Y. Chi, Z.G. Zhu, L.L. Sun, T. Su, W.P. Liao, C.L. Deng, Y.C. Zhao, W.Z. Ren, H.Y. Lu, Appl. Catal. B Environ. 259 (2019) 118089.
|
[22] |
Y. Lu, Y. Wang, L.D. Gao, J.C. Chen, J.P. Mao, Q.S. Xue, Y. Liu, H.H. Wu, G.H. Gao, M.Y. He, ChemSusChem 1 (2008) 302-306.
|
[23] |
C. Wang, Y. Qiu, H.Y. Wu, W.S. Yang, Q. Zhu, Z.G. Chen, S.H. Xun, W.S. Zhu, H.M. Li, Fuel 270 (2020) 117498.
|
[24] |
C. Wang, Z.G. Chen, X.Y. Yao, W. Jiang, M. Zhang, H.P. Li, H. Liu, W.S. Zhu, H.M. Li, RSC Adv.. 7 (2017) 39383-39390.
|
[25] |
Q. Zhang, J.H. Zhang, H.W. Yang, Y.L. Dong, Y. Liu, L.X. Yang, D.L. Wei, W.X. Wang, L.J. Bai, H. Chen, Catal. Sci. Technol. 9 (2019) 2915-2922.
|
[26] |
Y.W. Shi, G.Z. Liu, B.F. Zhang, X.W. Zhang, Green Chem.. 18 (2016) 5273-5279.
|
[27] |
J.Q. Tian, K. Zhang, W. Wang, F. Wang, J.M. Dan, S.C. Yang, J.L. Zhang, B. Dai, F. Yu, Green Energy Environ. 4 (2019) 311-321.
|
[28] |
S. Phromma, T. Wutikhun, P. Kasamechonchung, T. Eksangsri, C. Sapcharoenkun, Appl. Sci. 10 (2020) 993-1005.
|
[29] |
L. Xu, Q.Q. Jiang, Z.H. Xiao, X.Y. Li, J. Huo, S.Y. Wang, L.M. Dai, Angew. Chem. Int. Ed. 55 (2016) 5277-5281.
|
[30] |
S.W. Wang, J.M. Wang, H.L. Xin, Green Energy Environ. 2 (2017) 168-171.
|
[31] |
F.C. Lei, Y.F. Sun, K.T. Liu, S. Gao, L. Liang, B.C. Pan, Y. Xie, J. Am. Chem. Soc. 136 (2014) 6826-6829.
|
[32] |
H.-S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert, V. Ozolins, B. Dunn, Nat. Mater. 16 (2017) 454-460.
|
[33] |
D. Liu, C.H. Wang, Y. Yu, B.H. Zhao, W.C. Wang, Y.H. Du, B. Zhang, Chem 5 (2019) 376-389.
|
[34] |
X.F. Zhang, K.X. Wang, X. Wei, J.S. Chen, Chem. Mater. 23 (2011) 5290-5292.
|
[35] |
C. Wang, Y. Yi, H.P. Li, P.W. Wu, M.T. Li, W. Jiang, Z.G. Chen, H.M. Li, W.S. Zhu, S. Dai, Nano Energy 67 (2020) 104253.
|
[36] |
B. Christian Enger, R. Loedeng, A. Holmen, Appl. Catal. A Gen. 346 (2008) 1-27.
|
[37] |
R. Baddour-Hadjean, V. Golabkan, J.P. Pereira-Ramos, A. Mantoux, D. Lincot, J. Raman Spectrosc. 33 (2002) 631-638.
|
[38] |
C. Wang, H.P. Li, X.J. Zhang, Y. Qiu, Q. Zhu, S.H. Xun, W.S. Yang, H.M. Li, Z.G. Chen, W.S. Zhu, Energy Fuels 34 (2020) 2612-2616.
|
[39] |
J.E. Spanier, R.D. Robinson, F. Zhang, S.W. Chan, I.P. Herman, Phys. Rev. B 64 (2001) 245407.
|
[40] |
J.A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer, K.Z. Milowska, G. Garcia Cortadella, B. Nickel, C. Cardenas-Daw, J.K. Stolarczyk, A.S. Urban, J. Feldmann, Nano Lett.. 15 (2015) 6521-6527.
|
[41] |
L.X. Yin, Y.Q. Wang, G.S. Pang, Y. Koltypin, A. Gedanken, J. Colloid Interface Sci. 246 (2002) 78-84.
|
[42] |
S. Otsuki, T. Nonaka, N. Takashima, W.H. Qian, A. Ishihara, T. Imai, T. Kabe, Energy Fuels 14 (2000) 1232-1239.
|
[43] |
H.P. Li, W.S. Zhu, S.W. Zhu, J.X. Xia, Y.H. Chang, W. Jiang, M. Zhang, Y.W. Zhou, H.M. Li, AIChE J.. 62 (2016) 2087-2100.
|