Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Hongbo Xue, Sen Xiong, Kai Mi, Yong Wang. Visible-light degradation of azo dyes by imine-linked covalent organic frameworks. Green Energy&Environment, 2023, 8(1): 194-199. doi: 10.1016/j.gee.2020.09.010
Citation: Hongbo Xue, Sen Xiong, Kai Mi, Yong Wang. Visible-light degradation of azo dyes by imine-linked covalent organic frameworks. Green Energy&Environment, 2023, 8(1): 194-199. doi: 10.1016/j.gee.2020.09.010

Visible-light degradation of azo dyes by imine-linked covalent organic frameworks

doi: 10.1016/j.gee.2020.09.010
  • Covalent organic frameworks (COFs) are nanoporous crystalline polymers with densely conjugated structures. This work discovers that imine-linked COFs exhibit remarkable photodegradation efficiency to azo dyes dissolved in water. Visible light generates different types of radicals from COFs, and superoxide radicals break N=N bonds in dye molecules, resulting in 100% degradation of azo dyes within 1 h. In contrast, these dyes cannot be degraded by conventionally used photocatalysts, for example, TiO2. Importantly, the COF photocatalysts can be recovered from the dye solutions and re-used to degrade azo dyes for multiple times without loss of degradation efficiency. This work provides an efficient strategy to degrade synthetic dyes, and we expect that COFs with designable structures may use as new photocatalysts for other important applications.

     

  • loading
  • [1]
    S. Mondal, Environ. Eng. Sci. 25(2008) 383–396.
    [2]
    T.S.A. Singh, S.T. Ramesh, Environ. Eng. Sci. 30(2013) 333–349.
    [3]
    D.A. Yaseen, M. Scholz, Int. J. Environ. Sci. Technol. 16(2019) 1193– 1226.
    [4]
    T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. 77(2001) 247–255.
    [5]
    Y.L. Pang, A.Z. Abdullah, Clean 41(2013) 751–764.
    [6]
    Y.B. Zhou, J. Lu, Y. Zhou, Y.D. Liu, Environ. Pollut. 252(2019) 352–365.
    [7]
    T. Ngulube, J.R. Gumbo, V. Masindi, A. Maity, J. Environ. Manag. 191(2017) 35–57.
    [8]
    S.T. Ong, P.S. Keng, W.N. Lee, S.T. Ha, Y.T. Hung, Water 3(2011) 157– 176.
    [9]
    M. Solis, A. Solis, H.I. Perez, N. Manjarrez, M. Flores, Process Biochem. 47(2012) 1723–1748.
    [10]
    H. Tong, S.X. Ouyang, Y.P. Bi, N. Umezawa, M. Oshikiri, J.H. Ye, Adv. Mater. 24(2012) 229–251.
    [11]
    I.K. Konstantinou, T.A. Albanis, Appl. Catal. B Environ. 49(2004) 1–14.
    [12]
    M. Stylidi, D.I. Kondarides, X.E. Verykios, Appl. Catal. B Environ. 47(2004) 189–201.
    [13]
    T.X. Wu, G.M. Liu, J.C. Zhao, H. Hidaka, N. Serpone, New J. Chem. 24(2000) 93–98.
    [14]
    S. Kaur, V. Singh, Ultrason. Sonochem. 14(2007) 531–537.
    [15]
    S. Yagi, Y. Fujie, Y. Hyodo, H. Nakazumi, Dyes Pigm. 52(2002) 245– 252.
    [16]
    M.S. Masoud, H.H. Hammud, H. Beidas, Thermochim. Acta 381(2002) 119–131.
    [17]
    A. Afkhami, L. Khalafi, Supramol. Chem. 20(2008) 579–586.
    [18]
    J.Y. Zhang, J.A. Yang, H. Gao, Z.X. Du, T.M. Wang, Catal. Commun. 16(2011) 175–179.
    [19]
    J.L. Segura, M.J. Mancheno, F. Zamora, Chem. Soc. Rev. 45(2016) 5635–5671.
    [20]
    R.R. Liang, X. Zhao, Org. Chem. Front. 5(2018) 3341–3356.
    [21]
    W. Zhao, L.Y. Xia, X.K. Liu, CrystEngComm 20(2018) 1613–1634.
    [22]
    C.L. Tan, X.H. Cao, X.J. Wu, Q.Y. He, J. Yang, X. Zhang, J.Z. Chen, W. Zhao, S.K. Han, G.H. Nam, M. Sindoro, H. Zhang, Chem. Rev. 117(2017) 6225–6331.
    [23]
    M. Bhadra, S. Kandambeth, M.K. Sahoo, M. Addicoat, E. Balaraman, R. Banerjee, J. Am. Chem. Soc. 141(2019) 6152–6156.
    [24]
    Y.H. Fu, X.L. Zhu, L. Huang, X.C. Zhang, F.M. Zhang, W.D. Zhu, Appl. Catal. B Environ. 239(2018) 46–51.
    [25]
    P. Pachfule, A. Acharjya, J. Roeser, T. Langenhahn, M. Schwarze, R. Schomacker, A. Thomas, J. Schmidt, J. Am. Chem. Soc. 140(2018) 1423–1427.
    [26]
    R. Wang, X.S. Shi, A.K. Xiao, W. Zhou, Y. Wang, J. Membr. Sci. 566(2018) 197–204.
    [27]
    S. Chandra, S. Kandambeth, B.P. Biswal, B. Lukose, S.M. Kunjir, M. Chaudhary, R. Babarao, T. Heine, R. Banerjee, J. Am. Chem. Soc. 135(2013) 17853–17861.
    [28]
    B.P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine, R. Banerjeet, J. Am. Chem. Soc. 135(2013) 5328–5331.
    [29]
    Z. Liang, X. Bai, P. Hao, Y. Guo, Y. Xue, J. Tian, H. Cui, Appl. Catal. B Environ. 243(2019) 711–720.
    [30]
    F.-M. Zhang, J.-L. Sheng, Z.-D. Yang, X.-J. Sun, H.-L. Tang, M. Lu, H. Dong, F.-C. Shen, J. Liu, Y.-Q. Lan, Angew. Chem. Int. Ed. 57(2018) 12106–12110.
    [31]
    N. Xu, R.L. Wang, D.P. Li, X. Meng, J.L. Mu, Z.Y. Zhou, Z.M. Su, Dalton Trans. 47(2018) 4191–4197.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (324) PDF downloads(28) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return