Volume 7 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Shuolin Zhou, Jinhua Lai, Xianxiang Liu, Geng Huang, Gaolin You, Qiong Xu, Dulin Yin. Selective conversion of biomass-derived furfuryl alcohol into n-butyl levulinate over sulfonic acid functionalized TiO2 nanotubes. Green Energy&Environment, 2022, 7(2): 257-265. doi: 10.1016/j.gee.2020.09.009
Citation: Shuolin Zhou, Jinhua Lai, Xianxiang Liu, Geng Huang, Gaolin You, Qiong Xu, Dulin Yin. Selective conversion of biomass-derived furfuryl alcohol into n-butyl levulinate over sulfonic acid functionalized TiO2 nanotubes. Green Energy&Environment, 2022, 7(2): 257-265. doi: 10.1016/j.gee.2020.09.009

Selective conversion of biomass-derived furfuryl alcohol into n-butyl levulinate over sulfonic acid functionalized TiO2 nanotubes

doi: 10.1016/j.gee.2020.09.009
  • Sulfonic acid functionalized titanate nanotubes were prepared by the sulphonation reaction of hydrothermally synthesized TiO2 nanotubes (TNTs) using chlorosulfonic acid as the sulfating agent. The as-prepared catalysts were characterized by fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD) analysis, thermogravimetry-differential thermal gravimetry (TG-DTG) and X-ray photoelectron spectroscopy (XPS) techniques. The characterization results revealed that the catalysts retained the tubular structure of the TNTs and possessed a large number of active sulfonic acid sites. The catalytic performance of the catalysts for the synthesis of n-butyl levulinate was investigated via the alcoholysis of biomass-derived furfuryl alcohol under atmospheric pressure. The effects of the reaction factors such as the catalyst dosage, reaction time, and temperature on the alcoholysis of the furfuryl alcohol were systematically studied. Under mild conditions, about 79.9% yield of n-butyl levulinate was achieved. In addition, the catalysts showed a stable catalytic performance after four consecutive cycles. Furthermore, no leaching of the active species was observed during the hot filtration testing, which can be attributed to the covalently linked –SO3H groups on the TNTs surface. In addition, the opened tubular nanostructure of the catalyst and the introduced strong Brønsted acid sites exhibited synergistic effects, which facilitated the selective conversion of the furfuryl alcohol to butyl levulinate.

     

  • These authors contributed equally.
  • loading
  • [1]
    N. Gaurav, S. Sivasankari, G.S. Kiran, A. Ninawe, J. Selvin, Renew. Sustain. Energy Rev. 73(2017) 205-214.
    [2]
    D.M. Alonso, J.Q. Bond, J.A. Dumesic, Green Chem. 12(2010) 1493-1513.
    [3]
    L.T. Mika, E. Cséfalvay, Á. Németh, Chem. Rev. 118(2018) 505-613.
    [4]
    J. Zhang, L. Lombardo, G. Gözaydın, P.J. Dyson, N. Yan, Chin. J. Catal. 39(2018) 1445-1452.
    [5]
    M.J. Hülsey, H. Yang, N. Yan, ACS Sustain. Chem. Eng. 6(2018) 5694-5707.
    [6]
    J.N. Chheda, G.W. Huber, J.A. Dumesic, Angew. Chem. Int. Ed. 46(2007) 7164-7183.
    [7]
    M.J. Climent, A. Corma, S. Iborra, Green Chem. 16(2014) 516-547.
    [8]
    K. Yan, C. Jarvis, J. Gu, Y. Yan, Renew. Sustain. Energy Rev. 51(2015) 986-997.
    [9]
    A. Démolis, N. Essayem, F. Rataboul, ACS Sustain. Chem. Eng. 2(2014) 1338-1352.
    [10]
    E. Christensen, A. Williams, S. Paul, S. Burton, R.L. Mccormick, Energy Fuels 25(2011) 5422-5428.
    [11]
    U. Addepally, C. Thulluri, Fuel 159(2015) 935-942.
    [12]
    M.M. Zainol, N.A.S. Amin, M. Asmadi, Fuel Process. Technol. 167(2017) 431-441.
    [13]
    M.S. Tiwari, A.B. Gawade, G.D. Yadav, Green Chem. 19(2017) 963-976.
    [14]
    E.S. Sankar, K.S. Reddy, Y. Jyothi, B.D. Raju, K.S. Rama Rao, Catal. Lett. 147(2017) 2807-2816.
    [15]
    Y.-B. Huang, T. Yang, M.-C. Zhou, H. Pan, Y. Fu, Green Chem. 18(2016) 1516-1523.
    [16]
    E.L.S. Ngee, Y. Gao, X. Chen, T.M. Lee, Z. Hu, D. Zhao, N. Yan, Ind. Eng. Chem. Res. 53(2014) 14225-14233.
    [17]
    Z. Hu, Y. Peng, Y. Gao, Y. Qian, S. Ying, D. Yuan, S. Horike, N. Ogiwara, R. Babarao, Y. Wang, N. Yan, D. Zhao, Chem. Mater. 28(2016) 2659-2667.
    [18]
    N. Mansir, Y.H. Taufiq-Yap, U. Rashid, I.M. Lokman, Energy Convers. Manag. 141(2017) 171-182.
    [19]
    S.S. Chen, I.K.M. Yu, D.C.W. Tsang, A.C.K. Yip, E. Khan, L. Wang, Y.S. Ok, C.S. Poon, Chem. Eng. J. 327(2017) 328-335.
    [20]
    M. Li, J. Wei, G. Yan, H. Liu, X. Tang, Y. Sun, X. Zeng, T. Lei, L. Lin, Renew. Energy 147(2020) 916-923.
    [21]
    P. DemmaCará, R. Ciriminna, N.R. Shiju, G. Rothenberg, M. Pagliaro, ChemSusChem 7(2014) 835-840.
    [22]
    G. Wang, Z. Zhang, L. Song, Green Chem. 16(2014) 1436-1443.
    [23]
    X.-F. Liu, H. Li, H. Zhang, H. Pan, S. Huang, K.-L. Yang, S. Yang, RSC Adv. 6(2016) 90232-90238.
    [24]
    Z. Zhang, K. Dong, Z. Zhao, ChemSusChem 4(2011) 112-118.
    [25]
    D. Zhao, P. Prinsen, Y. Wang, W. Ouyang, F. Delbecq, C. Len, R. Luque, ACS Sustain. Chem. Eng. 6(2018) 6901-6909.
    [26]
    L. Peng, X. Gao, K. Chen, Fuel 160(2015) 123-131.
    [27]
    S.S.R. Gupta, M.L. Kantam, Catal. Commun. 124(2019) 62-66.
    [28]
    Z. Mohammadbagheri, A.N. Chermahini, Chem. Eng. J. 361(2019) 450-460.
    [29]
    A. Chappaz, J. Lai, K.D.O. Vigier, D. Morvan, R. Wischert, M. Corbet, B. Doumert, X. Trivelli, A. Liebens, F. Jérôme, ACS Sustain. Chem. Eng. 6(2018) 4405-4411.
    [30]
    P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 50(2011) 2904-2939.
    [31]
    M. Aguilar-Romero, R. Camposeco, S. Castillo, J. Marín, V. RodríguezGonzález, L.A. García-Serrano, I. Mejía-Centeno, Fuel 198(2017) 123-133.
    [32]
    M. Sluban, B. Cojocaru, V.I. Parvulescu, J. Iskra, R.C. Korošec, P. Umek, J. Catal. 346(2017) 161-169.
    [33]
    S. Li, N. Li, G. Li, L. Li, A. Wang, Y. Cong, X. Wang, G. Xu, T. Zhang, Appl. Catal. B Environ. 170-171(2015) 124-134.
    [34]
    M. Kitano, K. Nakajima, J.N. Kondo, S. Hayashi, M. Hara, J. Am. Chem. Soc. 132(2010) 6622-6623.
    [35]
    R. Camposeco, S. Castillo, I. Mejia-Centeno, J. Navarrete, V. RodriguezGonzalez, Microporous Mesoporous Mater. 236(2016) 235-243.
    [36]
    I.S. Gomes, D.C. De Carvalho, A.C. Oliveira, E. Rodríguez-Castellón, S. Tehuacanero-Cuapa, P.T.C. Freire, J.M. Filho, G.D. Saraiva, F.F. De Sousa, R. Lang, Chem. Eng. J. 334(2018) 1927-1942.
    [37]
    S. Zhou, X. Liu, J. Lai, M. Zheng, W. Liu, Q. Xu, D. Yin, Chem. Eng. J. 361(2019) 571-577.
    [38]
    S. Zhou, D. Jiang, X. Liu, Y. Chen, D. Yin, RSC Adv. 8(2018) 3657-3662.
    [39]
    H.-H. Ou, S.-L. Lo, Separ. Purif. Technol. 58(2007) 179-191.
    [40]
    D.C.D. Carvalho, A.C. Oliveira, O.P. Ferreira, J.M. Filho, S. Tehuacanero-Cuapa, A.C. Oliveira, Chem. Eng. J. 313(2017) 1454-1467.
    [41]
    N. Koukabi, E. Kolvari, M.A. Zolfigol, A. Khazaei, B.S. Shaghasemi, B. Fasahati, Adv. Synth. Catal. 354(2012) 2001-2008.
    [42]
    S. Rahmani, A. Amoozadeh, E. Kolvari, Catal. Commun. 56(2014) 184-188.
    [43]
    T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater. 11(1999) 1307-1311.
    [44]
    C.-H. Lin, S.-H. Chien, J.-H. Chao, C.-Y. Sheu, Y.-C. Cheng, Y.-J. Huang, C.-H. Tsai, Catal. Lett. 80(2002) 153-159.
    [45]
    E. Tabrizian, A. Amoozadeh, S. Rahmani, RSC Adv. 6(2016) 21854-21864.
    [46]
    S.-X. Lu, H. Zhong, D.-M. Mo, Z. Hu, H.-L. Zhou, Y. Yao, Green Chem. 19(2017) 1371-1377.
    [47]
    R. Camposeco, S. Castillo, J. Navarrete, R. Gomez, Catal. Today 266(2016) 90-101.
    [48]
    Z. Xu, C. Huang, L. Wang, X. Pan, L. Qin, X. Guo, G. Zhang, Ind. Eng. Chem. Res. 54(2015) 4593-4602.
    [49]
    M. Qamar, C.R. Yoon, H.J. Oh, D.H. Kim, J.H. Jho, K.S. Lee, W.J. Lee, H.G. Lee, S.J. Kim, Nanotechnology 17(2006) 5922-5929.
    [50]
    F. Sallem, R. Chassagnon, A. Megriche, M.E. Maaoui, N. Millot, J. Alloys Compd. 722(2017) 785-796.
    [51]
    F. Nemati, M.M. Heravi, R. Saeedi Rad, Chin. J. Catal. 33(2012) 1825-1831.
    [52]
    J. Gardy, A. Hassanpour, X. Lai, M.H. Ahmed, M. Rehan, Appl. Catal. B Environ. 207(2017) 297-310.
    [53]
    L. Wu, X. Yang, J. Li, Y. Huang, X. Li, Mater. Chem. Phys. 202(2017) 136-142.
    [54]
    Z. Mohammadbagheri, A.N. Chermahini, J. Ind. Eng. Chem. 62(2018) 401-408.
    [55]
    B. Lu, S. An, D. Song, F. Su, X. Yang, Y. Guo, Green Chem. 17(2015) 1767-1778.
    [56]
    J. Yang, Z. Ao, H. Wu, S. Zhang, C. Chi, C. Hou, L. Qian, Renew. Energy 146(2020) 477-483.
    [57]
    S. Zhu, J. Guo, X. Wang, J. Wang, W. Fan, ChemSusChem 10(2017) 2547-2559.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (182) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return