Jingqi Wang, Musen Zhou, Diannan Lu, Weiyang Fei, Jianzhong Wu. Computational screening and design of nanoporous membranes for efficient carbon isotope separation. Green Energy&Environment, 2020, 5(3): 364-373. doi: 10.1016/j.gee.2020.07.025
Citation: Jingqi Wang, Musen Zhou, Diannan Lu, Weiyang Fei, Jianzhong Wu. Computational screening and design of nanoporous membranes for efficient carbon isotope separation. Green Energy&Environment, 2020, 5(3): 364-373. doi: 10.1016/j.gee.2020.07.025

Computational screening and design of nanoporous membranes for efficient carbon isotope separation

doi: 10.1016/j.gee.2020.07.025
  • Stable isotopes have been routinely used in chemical sciences, medical treatment and agricultural research. Conventional technologies to produce high-purity isotopes entail lengthy separation processes that often suffer from low selectivity and poor energy efficiency. Recent advances in nanoporous materials open up new opportunities for more efficient isotope enrichment and separation as the pore size and local chemical environment of such materials can be engineered with atomic precision. In this work, we demonstrate the unique capability of nanoporous membranes for the separation of stable carbon isotopes by computational screening a materials database consisting of 12,478 computation-ready, experimental metal-organic frameworks (MOFs). Nanoporous materials with the highest selectivity and membrane performance scores have been identified for separation of12CH4/13CH4 at the ambient condition (300 K). Analyzing the structural features and metal sites of the promising MOF candidates offers useful insights into membrane design to further improve the performance. An upper limit of the efficiency has been identified for the separation of 12CH4/13CH4 with the existing MOFs and those variations by replacement of the metal sites.

     

  • loading
  • [1]
    M. Matucha, W. Jockisch, P. Verner, G. Anders, J. Chromatogr. A 588 (1991) 251-258.
    [2]
    R.A. De Vries, M. De Bruin, J.J.M. Marx, A. Van De Wiel, Nucl. Med. Biol. 20 (1993) 809-817.
    [3]
    P. Ciais, P.P. Tans, M. Trolier, J.W. White, R.J. Francey, Science 269 (1995) 1098-1102.
    [4]
    E.D. Oziashvili, A.S. Egiazarov, Russ. Chem. Rev. 58 (1989) 325-336.
    [5]
    H.O. Meyer, G.L. Moake, P.P. Singh, Phys. Rev. C 23 (1981) 616-622.
    [6]
    K. Takeshita, Y. Nakano, M. Shimizu, Y. Fujii, J. Nucl. Sci. Technol. 39 (2002) 1207-1212.
    [7]
    Y. Tian, W.Y. Fei, J.Z. Wu, Ind. Eng. Chem. Res. 57 (2018) 5151-5160.
    [8]
    M. Zhou, Y. Tian, W. Fei, J. Wu, J. Phys. Chem. C 123 (2019) 7397-7407.
    [9]
    M. Zhou, A. Vassallo, J. Wu, J. Membr. Sci. 598 (2020).
    [10]
    J.I.F. Slaets, C. Resch, L. Mayr, G. Weltin, M. Heiling, R. Gruber, G. Dercon, Rapid Commun. Mass Spectrom. (2019).
    [11]
    H. Oh, M. Hirscher, Eur. J. Inorg. Chem. 2016 (2016) 4278-4289.
    [12]
    F. Bruner, G.P. Cartoni, M. Possanzini, Anal. Chem. 41 (2002) 1122-1124.
    [13]
    G. Berger, C. Prenant, J. Sastre, D. Comar, Appl Radiat Isot 34 (1983) 1525-1530.
    [14]
    F. Bruner, G.P. Cartoni, A. Liberti, Anal. Chem. 38 (1966) 298-303.
    [15]
    R.C. Jones, W.H. Furry, Rev. Mod. Phys. 18 (1946) 151-224.
    [16]
    B.B. Mcinteer, Sep. Sci. Technol. 15 (2006) 491-508.
    [17]
    H.-L. Li, Y.-L. Ju, L.-J. Li, D.-G. Xu, Chem. Eng. Process. 49 (2010) 255-261.
    [18]
    E.-H. Dulf, C.-I. Pop, F. Dulf, Sep. Sci. Technol. 47 (2012) 1234-1240.
    [19]
    D.C. Dumitrache, B.D. Schutter, A. Huesman, E. Dulf, J. Process Control 22 (2012) 798-808.
    [20]
    J.Y. Kim, R. Balderas-Xicohtencatl, L. Zhang, S.G. Kang, M. Hirscher, H. Oh, H.R. Moon, J. Am. Chem. Soc. 139 (2017) 15135-15141.
    [21]
    M. Mu, J. Cheng, C. Dai, N. Liu, Z. Lei, Y. Ding, J. Lu, Green Energy Environ. 4 (2019) 190-197.
    [22]
    S. Ren, Y. Hou, K. Zhang, W. Wu, Green Energy Environ. 3 (2018) 179-190.
    [23]
    T.R. Mazur, B. Klappauf, M.G. Raizen, Nat. Phys. 10 (2014) 601-605.
    [24]
    K.J. Nihill, J.D. Graham, S.J. Sibener, Phys. Rev. Lett. 119 (2017) 176001.
    [25]
    M. Dong, X. Mao, J.J. Gonzalez, J. Lu, R.E. Russo, Anal. Chem. 85 (2013) 2899-2906.
    [26]
    M. Kumar, V. Gupta, A.K. Nath, Appl. Phys. B 80 (2005) 757-763.
    [27]
    C. Chen, X. Feng, Q. Zhu, R. Dong, R. Yang, Y. Cheng, C. He, Inorg. Chem. 58 (2019) 2717-2728.
    [28]
    H. Yuan, J. Chen, D. Li, H. Chen, Y. Chen, Chem. Eng. J. 373 (2019) 171-178.
    [29]
    C. Miao, J. Mol. Struct. 1193 (2019) 286-293.
    [30]
    Y. Wang, T. Du, H. Jia, Z. Qiu, Y. Song, Solid State Sci. 97 (2019).
    [31]
    L. Wang, J. Inorg. Organomet. Polym Mater. 30 (2019) 291-298.
    [32]
    Y.G. Chung, J. Camp, M. Haranczyk, B.J. Sikora, W. Bury, V. Krungleviciute, T. Yildirim, O.K. Farha, D.S. Sholl, R.Q. Snurr, Chem. Mater. 26 (2014) 6185-6192.
    [33]
    Y.G. Chung, E. Haldoupis, B.J. Bucior, M. Haranczyk, S. Lee, H. Zhang, K.D. Vogiatzis, M. Milisavljevic, S. Ling, J.S. Camp, B. Slater, J.I. Siepmann, D.S. Sholl, R.Q. Snurr, J. Chem. Eng. Data 64 (2019) 5985-5998.
    [34]
    B. Wang, L.-H. Xie, X. Wang, X.-M. Liu, J. Li, J.-R. Li, Green Energy Environ. 3 (2018) 191-228.
    [35]
    H. Oh, I. Savchenko, A. Mavrandonakis, T. Heine, M. Hirscher, ACS Nano 8 (2014) 761-770.
    [36]
    H. Thakkar, S. Eastman, Q. Al-Naddaf, A.A. Rownaghi, F. Rezaei, ACS Appl. Mater. Interfaces 9 (2017) 35908-35916.
    [37]
    K. Lee, J.D. Howe, L.-C. Lin, B. Smit, J.B. Neaton, Chem. Mater. 27 (2015) 668-678.
    [38]
    L. Zhu, X.Q. Liu, H.L. Jiang, L.B. Sun, Chem. Rev. 117 (2017) 8129-8176.
    [39]
    M. Tong, Y. Lan, Q. Yang, C. Zhong, Green Energy Environ. 3 (2018) 107-119.
    [40]
    P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Ferey, R.E. Morris, C. Serre, Chem. Rev. 112 (2012) 1232-1268.
    [41]
    J. Teufel, H. Oh, M. Hirscher, M. Wahiduzzaman, L. Zhechkov, A. Kuc, T. Heine, D. Denysenko, D. Volkmer, Adv. Mater. 25 (2013) 635-639.
    [42]
    H. Oh, K.S. Park, S.B. Kalidindi, R.A. Fischer, M. Hirscher, J. Mater. Chem. A 1 (2013).
    [43]
    L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Chem. Rev. 112 (2012) 1105-1125.
    [44]
    J.Y. Kim, H. Oh, H.R. Moon, Adv. Mater. 31 (2019) e1805293.
    [45]
    A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, J. Am. Chem. Soc. 114 (1992) 10024-10035.
    [46]
    J. Bigeleisen, C.B. Cragg, M. Jeevanandam, J. Chem. Phys. 47 (1967) 4335-4346.
    [47]
    W.A. Van Hook, L.P.N. Rebelo, M. Wolfsberg, J. Phys. Chem. A 105 (2001) 9284-9297.
    [48]
    U. Setzmann, W. Wagner, J. Phys. Chem. Ref. Data 20 (1991) 1061-1155.
    [49]
    A. Lotfi, J. Vrabec, J. Fischer, Mol. Phys. 76 (1992) 1319-1333.
    [50]
    A.L. Myers, J.M. Prausnitz, AlChE J. 11 (1965) 121-127.
    [51]
    S. Keskin, D.S. Sholl, Langmuir 25 (2009) 11786-11795.
    [52]
    E. Haldoupis, S. Nair, D.S. Sholl, J. Am. Chem. Soc. 132 (2010) 7528-7539.
    [53]
    Y. Tian, X. Xu, J. Wu, Langmuir 33 (2017) 11797-11803.
    [54]
    W. E, W. Ren, E. Vanden-Eijnden, J. Chem. Phys. 126 (2007) 164103.
    [55]
    T.F. Willems, C.H. Rycroft, M. Kazi, J.C. Meza, M. Haranczyk, Microporous Mesoporous Mater. 149 (2012) 134-141.
    [56]
    W.K. Kim, M. Kanduc, R. Roa, J. Dzubiella, Phys. Rev. Lett. 122 (2019) 108001.
    [57]
    M. Agrawal, R. Han, D. Herath, D.S. Sholl, PNAS 117 (2020) 877-882.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (174) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return