Volume 6 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
Zheng Zhang, Kai Chen, Qiang Zhao, Mei Huang, Xiaoping Ouyang. Comparative adsorption of heavy metal ions in wastewater on monolayer molybdenum disulfide. Green Energy&Environment, 2021, 6(5): 751-758. doi: 10.1016/j.gee.2020.06.019
Citation: Zheng Zhang, Kai Chen, Qiang Zhao, Mei Huang, Xiaoping Ouyang. Comparative adsorption of heavy metal ions in wastewater on monolayer molybdenum disulfide. Green Energy&Environment, 2021, 6(5): 751-758. doi: 10.1016/j.gee.2020.06.019

Comparative adsorption of heavy metal ions in wastewater on monolayer molybdenum disulfide

doi: 10.1016/j.gee.2020.06.019
  • To maximize the potential of monolayer molybdenum disulfide (MoS2) sheet in the disposal of heavy metal ions in wastewater, we compared the adsorption of several common heavy metal ions (including Cr3+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, and Pb2+) in wastewater on the monolayer MoS2 sheet through first-principles calculation. Our simulation results show that the monolayer MoS2 sheet is a potential heavy metal adsorption material because of the attractive interaction between them. The most negative adsorption energy determines that the TMo site is the most stable adsorption site for the heavy metal ions. The attractive interaction is considered as chemical adsorption, and it is closely related to charge transfer. The orbital hybridization between S p and heavy metal ions p and d states electrons contributes to the adsorption, except the orbital hybridization between S p and Pb p states electrons contributes to the Pb2+ adsorption. All the results show that the monolayer MoS2 sheet is most suitable for removing Ni2+ and Cr3+ ions from wastewater, followed by Cu2+ and Pb2+. For the ions Cd2+, Zn2+, and Hg2+, its adsorption strength remains to be improved.

     

  • loading
  • [1]
    P. Echeveste, J. Dachs, N. Berrojalbiz, S. Agustí, Chemosphere 81(2010) 161-168.
    [2]
    L. Nizzetto, M. Macleod, K. Borgå, A. Cabrerizo, J. Dachs, A.D. Guardo, D. Ghirardello, K.M. Hansen, A. Jarvis, A. Lindroth, Environ. Sci. Technol. 44(2010) 6526-6531.
    [3]
    Y. Zhou, L. Zhang, Z. Cheng, J. Mol. Liq. 212(2015) 739-762.
    [4]
    A. Walcarius, L. Mercier, J. Mater. Chem. 20(2010) 4478-4511.
    [5]
    X. Chen, Z. Guo, Z. Liu, Y. Jiang, D. Zhan, J. Liu, X. Huang, Adv. Sci. 2(2015) 1500013.
    [6]
    M. Iqbal, R.G.J. Edyvean, Miner. Eng. 17(2004) 217-223.
    [7]
    R.K. Misra, S.K. Jain, P.K. Khatri, J. Hazard. Mater. 185(2011) 1508-1512.
    [8]
    R. Silva, L. Cadorin, J. Rubio, Colloids Surf. A 23(2010) 1220-1226.
    [9]
    J. Landaburu-Aguirre, E. Pongra cz, A. Sarpola, R.L. Keiski, Separ. Purif. Technol. 88(2012) 130-137.
    [10]
    S. Pulkka, M. Martikainen, A. Bhatnagar, M. Sillanp, Separ. Purif. Technol. 132(2014) 252-271.
    [11]
    L.C. Ajjabi, L. Chouba, J. Environ. Manag. 90(2009) 3485-3489.
    [12]
    B. Yu, Y. Zhang, A. Shukla, S.S. Shukla, K.L. Dorris, J. Hazard. Mater. 80(2000) 33-42.
    [13]
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306(2004) 666-669.
    [14]
    D.R. Haag, H.H. Kung, Top. Catal. 45(2014) 762-773.
    [15]
    G. Kucinskis, G. Bajars, J. Kleperis, J. Power Sources 240(2013) 66-79.
    [16]
    P. Avouris, Nano Lett. 10(2010) 4285-4294.
    [17]
    S. Kumar, A. Tripathi, S.A. Khan, C. Pannu, D.K. Avasthi, Appl. Phys. Lett. 105(2014) 666.
    [18]
    Q. Zhao, Z. Zhang, X. Ouyang, Mater. Res. Express 5(2018) 045506.
    [19]
    Z. Zhang, Q. Zhao, M. Huang, X. Zhang, X. Ouyang, Nanoscale Adv. 1(2019) 114-121.
    [20]
    H. Cui, Y. Zhang, X. Zhang, IEEE Sensor. J. 19(2019) 5249-5255.
    [21]
    H. Cui, X. Zhang, J. Zhang, Y. Zhang, High Volt. 4(2019) 242-258.
    [22]
    H. Cui, C. Yan, P. Jia, W. Cao, Appl. Surf. Sci. 512(2020) 145759.
    [23]
    H. Cui, P. Jia, X. Peng, Appl. Surf. Sci. 513(2020) 145863.
    [24]
    L. Xu, J. Wang, Crit. Rev. Environ. Sci. Technol. 47(2017) 1042-1105.
    [25]
    A.I.A. Sherlala, A.A.A. Raman, M.M. Bello, A. Asghar, Chemosphere 193(2018) 1004.
    [26]
    Z. Wang, A. Sim, J.J. Urban, B. Mi, Environ. Sci. Technol. 52(2018) 9741-9748.
    [27]
    M.J. Aghagoli, F. Shemirani, Microchim. Acta 184(2017) 237-244.
    [28]
    V.W. Lau, A.F. Masters, A.M. Bond, T. Mashchmeyer, ChemCatChem 3(2017) 1739-1742.
    [29]
    D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowala, Nano Lett. 13(2013) 6222-6227.
    [30]
    Y. Zhu, Y. Jin, K. Chang, Z. Chen, X. Li, X. Wu, C. Jin, F. Ye, R. Shen, W. Dong, J. Mol. Liq. 259(2018) 376-383.
    [31]
    B. Feng, C. Yao, S. Chen, R. Luo, S. Liu, S. Tong, Chem. Eng. J. 350(2018) 692-702.
    [32]
    Y. Fang, Q. Huang, P. Liu, J. Shi, G. Xu, Colloids Surf. A 540(2018) 112-122.
    [33]
    S. Roobakhsh, Z. Rostami, S. Azizian, Separ. Purif. Technol. 200(2018) 23-28.
    [34]
    Z. Zhang, Q. Zhao, M. Huang, X. Ouyang, Adsorption 25(2019) 159-171.
    [35]
    Y. Fan, J. Zhang, Y. Qiu, J. Zhu, Y. Zhang, G. Hu, Comput. Mater. Sci. 138(2017) 255-266.
    [36]
    Y. Li, X. Zhang, D. Chen, S. Xiao, J. Tang, Appl. Surf. Sci. 443(2018) 274-279.
    [37]
    J. Song, H. Lou, J. Appl. Phys. 123(2018) 175303.
    [38]
    C. Liu, Q. Wang, F. Jia, S. Song, J. Mol. Liq. 292(2019) 111390.
    [39]
    Q. Zhao, Z. Zhang, Y. Li, X. Ouyang, Sci. Technol. Nucl. Ins. 2017(2017) 6547939.
    [40]
    Q. Zhao, Z. Zhang, M. Huang, X. Ouyang, Comput. Mater. Sci. 162(2019) 133-139.
    [41]
    H. Weng, X. Yang, J. Dong, H. Mizuseki, M. Kawasaki, Y. Kawazoe, Phys. Rev. B 69(2004) 125219.
    [42]
    Z. Zhang, Q. Zhao, Y. Li, X. Ouyang, J. Korean Phys. Soc. 68(2016) 1069-1074.
    [43]
    C. Ekuma, D. Singh, J. Moreno, M. Jarrell, Phys. Rev. B 85(2012) 085205.
    [44]
    Q. Zhao, Z. Zhang, M. Huang, X. Ouyang, Nucl. Sci. Tech. 28(2017) 32.
    [45]
    Z. Yan, J. Yu, L. Wu, B. Wan, H. Gou, Comput. Mater. Sci. 124(2016) 273-281.
    [46]
    Q. Zhao, Z. Zhang, Y. Li, X. Ouyang, RSC Adv. 7(2017) 28499-28505.
    [47]
    H. Li, G. Henkelman, J. Phys. Chem. C 121(2017) 27504-27510.
    [48]
    H. Li, K. Shin, G. Henkelman, J. Chem. Phys. 149(2018) 174705.
    [49]
    H. Li, L. Luo, P. Kunal, C.S. Bonifacio, Z.Y. Duan, J.C. Yang, S.M. Humphrey, R.M. Crooks, G. Henkelman, J. Phys. Chem. C 122(2018) 2712-2716.
    [50]
    H. Li, W. Chai, G. Henkelman, J. Mater. Chem. A 7(2019) 23868-23877.
    [51]
    H. Li, S. Guo, K. Shin, M.S. Wong, G. Henkelman, ACS Catal. 9(2019) 7957-7966.
    [52]
    C. Shi, H. Li, Y. Zhang, X. Xu, J. Feng, H. Ji, Environ. Chem. 36(2017) 48-61.
    [53]
    F.L. Hirshfeld, Theor. Chim. Acta 44(1977) 129-138.
    [54]
    P. Hohenberg, W. Kohn, Phys. Rev. 136(1964) B864.
    [55]
    W. Kohn, L.J. Sham, Phys. Rev. 140(1965) A1133-A1138.
    [56]
    S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, Z. Kristallogr. 220(2005) 567-570.
    [57]
    J.P. Perdew, W. Yue, Phys. Rev. B 33(1986) 8800-8802.
    [58]
    J.P. Perdew, K. Burke, M. Ernzerhof, Phy. Rev. Lett. 77(1996) 3865-3868.
    [59]
    K. Burke, J.P. Perdew, Y. Wang, Electronic Density Functional Theory Recent Progress and New Directions, Springer, New York, 1998.
    [60]
    Q. Luan, C.L. Yang, M.S. Wang, X.G. Ma, Chin. J. Phys. 55(2017) 1930-1937.
    [61]
    A.N. Enyashin, L. Yadgarov, L. Houben, I. Popov, M. Weidenbach, R. Tenne, M. Bar-Sadan, G. Seifert, J. Phys. Chem. C 115(2011) 24586.
    [62]
    Q. Yue, S. Chang, S. Qin, J. Li, Phys. Lett. A 377(2013) 1362-1367.
    [63]
    D. Ma, W. Ju, T. Li, X. Zhang, C. He, B. Ma, Z. Lu, Z. Yang, Appl. Surf. Sci. 383(2016) 98-105.
    [64]
    Y. Wang, B. Wang, R. Huang, B. Gao, F. Kong, Q. Zhang, Physica E 63(2014) 276-282.
    [65]
    X.L. Mu, X. Gao, H.T. Zhao, M. George, T. Wu, J. Zhejiang Univ.-Sci. A 19(2018) 60-67.
    [66]
    H. Wei, Y. Gui, J. Kang, W. Wang, C. Tang, Nanomaterials 8(2018) 646.
    [67]
    S. Zhao, J. Xue, K. Wei, Chem. Phys. Lett. 595-596(2014) 35-42.
    [68]
    H. Li, M. Huang, G. Cao, Phys. Chem. Chem. Phys. 18(2016) 15110-15117.
    [69]
    Y. Kadioglu, G. Gokoglu, O.U. Akturk, Appl. Surf. Sci. 425(2017) 246-253.
    [70]
    F. Ferreira, A. Carvalho, í. Moura, J. Coutinho, R. Ribeiro, J. Phys. Condens. Matter. 30(2017) 035003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (164) PDF downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return