Damien Mathis, Pierre Blanchet, Véronic Landry, Philippe Lagière. Thermal characterization of bio-based phase changing materials in decorative wood-based panels for thermal energy storage. Green Energy&Environment, 2019, 4(1): 56-65. doi: 10.1016/j.gee.2018.05.004
Citation: Damien Mathis, Pierre Blanchet, Véronic Landry, Philippe Lagière. Thermal characterization of bio-based phase changing materials in decorative wood-based panels for thermal energy storage. Green Energy&Environment, 2019, 4(1): 56-65. doi: 10.1016/j.gee.2018.05.004

Thermal characterization of bio-based phase changing materials in decorative wood-based panels for thermal energy storage

doi: 10.1016/j.gee.2018.05.004
  • Decorative wood panels containing pouches of bio-based phase changing materials (PCMs) were prepared. Three different PCM mixtures were used: a blend of capric and lauric acids as well as two commercial products, Puretemp®20 and Puretemp®23 (Puretemp). The panels consist of engraved Medium Density Fiberboard (MDF) filled with a plastic pouch filled with PCM. High density fiberboard (HDF) was used on top of the panels to enclose the PCM pouches. PCM mixtures were first tested by differential scanning calorimetry (DSC). Phase change temperature and total heat storage of the panels were measured for both fusion and solidification with a Dynamic Heat-Flow Meter Apparatus (DHFMA). DSC and DHFMA results were compared, allowing a better understanding of results gathered from these two techniques. DSC calibration has been revealed important when assessing PCMs. The panels present a phase change temperature and a latent heat storage suitable for buildings applications. The panel made with Puretemp®23 presented the highest energy, with 57.1 J g−1. Thermal cycling was conducted on the panels to investigate thermal reliability, which revealed small modifications of thermal properties for two products. For all cases, latent heat was found stable. Hygro-mechanical behavior of the panels was also evaluated as these where designed to be esthetic decorative panels. This study exposes the potential of a new type of wood-based panels loaded with PCM for thermal energy storage and brings overall knowledge about PCM products thermal characterization.

     

  • loading
  • [1]
    R.Zeng, X.Wang, H.Di, et al. Energy Build., 43 (2011),pp. 1081-1090
    [2]
    K.Peippo, P.Kauranen, P.D.Lund Energy Build., 17 (1991),pp. 259-270
    [3]
    Z.Zhou, Z.Zhang, J.Zuo, et al. Renew. Sustain. Energy Rev., 48 (2015),pp. 692-703
    [4]
    A.Castell, M.M.Farid Energy Build., 81 (2014),pp. 59-71
    [5]
    B.Zalba, J.M.Marı́n, L.F.Cabeza, et al. Int. J. Refrig., 27 (2004),pp. 839-849
    [6]
    M.Pomianowski, P.Heiselberg, Y.Zhang Energy Build., 67 (2013),pp. 56-69
    [7]
    F.Kuznik, J.Virgone, J.J.Roux Energy Build., 40 (2008),pp. 148-156
    [8]
    A.K.Athienitis, C.Liu, D.Hawes, et al. Build. Environ., 32 (1997),pp. 405-410
    [9]
    F.Kuznik, J.Virgone, K.Johannes Renew. Energy, 36 (2011),pp. 1458-1462
    [10]
    B.Nghana, F.Tariku Build. Environ., 99 (2016),pp. 221-238
    [11]
    V.V.Tyagi, D.Buddhi Renew. Sustain. Energy Rev., 11 (2007),pp. 1146-1166
    [12]
    J.Perez-Garcia, B.Lippke, J.Comnick, et al. Wood Fiber Sci., 37 (2007),pp. 140-148
    [13]
    X.Guo, J.Cao, Y.Peng, et al. Mater. Des., 89 (2016),pp. 1325-1334
    [14]
    S.G.Jeong, J.Jeon, J.Seo, et al. Energy Convers. Manag., 64 (2012),pp. 516-521
    [15]
    C.Barreneche, J.Vecstaudza, D.Bajare, et al. IOP Conf. Ser.: Mater. Sci. Eng., 251 (2017),p. 012111
    [16]
    G.A.Lane
    [17]
    M.M.Farid, A.M.Khudhair, S.A.K.Razack, et al. Energy Convers. Manag., 45 (2004),pp. 1597-1615
    [18]
    Y.Yuan, N.Zhang, W.Tao, et al. Renew. Sustain. Energy Rev., 29 (2014),pp. 482-498
    [19]
    J.A.Noël, P.M.Allred, M.A.White Int. J. Life Cycle Assess., 20 (2015),pp. 367-376
    [20]
    J.Kośny
    [21]
    R.M.R.Saeed
    [22]
    C.Castellón, E.Günther, H.Mehling, et al. Int. J. Energy Res., 32 (2008),pp. 1258-1265
    [23]
    N.Shukla, J.Kosny Curr. Sustain. Renew. Energy Rep., 2 (2015),pp. 41-46
    [24]
    G.Feng, K.Huang, H.Xie, et al. Renew. Energy, 87 (2016),pp. 1148-1153
    [25]
    X.Jin, X.Xu, X.Zhang, et al. Thermochim. Acta, 595 (2014),pp. 17-21
    [26]
    C.Barreneche, A.Solé, L.Miró, et al. Thermochim. Acta, 553 (2013),pp. 23-26
    [27]
    E.Günther, S.Hiebler, H.Mehling
    [28]
    E.Günther, S.Hiebler, H.Mehling, et al. Int. J. Thermophys., 30 (2009),pp. 1257-1269
    [29]
    G.W.H.Höhne, H.K.Cammenga, W.Eysel, et al. Thermochim. Acta, 160 (1990),pp. 1-12
    [30]
    H.K.Cammenga, W.Eysel, E.Gmelin, et al. Thermochim. Acta, 219 (1993),pp. 333-342
    [31]
    D.Price J. Therm. Anal. Calorim., 45 (1995),pp. 1285-1296
    [32]
    G.Ferrer, A.Solé, C.Barreneche, et al. Renew. Sustain. Energy Rev., 50 (2015),pp. 665-685
    [33]
    P.Blanchet, R.Beauregard, A.Cloutier, et al. For. Prod. J., 53 (2003),pp. 30-37
    [34]
    A.Karaipekli, A.Sarı J. Ind. Eng. Chem., 16 (2010),pp. 767-773
    [35]
    R.K.Sharma, P.Ganesan, V.V.Tyagi, et al. Energy Convers. Manag., 95 (2015),pp. 193-228
    [36]
    Z.Zhang, Y.Yuan, N.Zhang, et al. Energy, 90 (2015),pp. 359-368
    [37]
    F.Kuznik, D.David, K.Johannes, et al. Renew. Sustain. Energy Rev., 15 (2011),pp. 379-391
    [38]
    A.Karaipekli, A.Sarı Renew. Energy, 33 (2008),pp. 2599-2605
    [39]
    S.Karaman, A.Karaipekli, A.Sarı, et al. Sol. Energy Mater. Sol. Cell., 95 (2011),pp. 1647-1653
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (186) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return