Li Xu, Yuhui Tian, Tiefeng Liu, Henan Li, Jingxia Qiu, Sheng Li, Huaming Li, Shouqi Yuan, Shanqing Zhang. α-Fe2O3 nanoplates with superior electrochemical performance for lithium-ion batteries. Green Energy&Environment, 2018, 3(2): 156-162. doi: 10.1016/j.gee.2018.01.005
Citation: Li Xu, Yuhui Tian, Tiefeng Liu, Henan Li, Jingxia Qiu, Sheng Li, Huaming Li, Shouqi Yuan, Shanqing Zhang. α-Fe2O3 nanoplates with superior electrochemical performance for lithium-ion batteries. Green Energy&Environment, 2018, 3(2): 156-162. doi: 10.1016/j.gee.2018.01.005

α-Fe2O3 nanoplates with superior electrochemical performance for lithium-ion batteries

doi: 10.1016/j.gee.2018.01.005
  • On account of the high theoretical capacity, high corrosion resistance, environmental benignity, abundant availability and low cost, the research on α-Fe2O3 has been gradually fastened on as promising anodes materials toward lithium-ion batteries (LIBs). A high-performance anode for LIBs based on α-Fe2O3 nanoplates have been selectively prepared. The α-Fe2O3 nanoplates can be synthesized with iron ion-based ionic liquid as iron source and template. The α-Fe2O3 nanoplates as the anode of LIBs can display high capacity of around 1950 mAh g−1 at 0.5 A g−1 which have exceeded the theoretical capacity of α-Fe2O3. On account of unique nanoplate structures and gum arabic as binder, the α-Fe2O3 nanoplates also exhibit high rate capability and excellent cycling performance.

     

  • loading
  • [1]
    J.X.Qiu, S.Li, X.T.Su, et al. Chem. Eng. J., 320 (2017),pp. 300-307
    [2]
    F.M.Hassan, R.Batmaz, J.D.Li, et al. Nat. Commun., 6 (2015),p. 8597
    [3]
    T.Z.Yuan, Y.Z.Jiang, W.P.Sun, et al. Adv. Funct. Mater., 26 (2016),pp. 2198-2206
    [4]
    L.M.Suo, O.Borodin, T.Gao, et al. Science, 350 (2015),pp. 938-943
    [5]
    H.N.Li, X.F.Zhu, H.Sitinamaluwa, et al. J. Alloys Compd., 714 (2017),pp. 425-432
    [6]
    Y.F.Liu, R.J.Ma, Y.P.He, et al. Adv. Funct. Mater., 24 (2014),pp. 3944-3952
    [7]
    L.Xu, H.Sitinamaluwa, H.N.Li, et al. J. Mater. Chem., A 5 (2017),pp. 2102-2109
    [8]
    Q.B.Zhang, J.X.Wang, J.C.Dong, et al. Nano Energy, 13 (2015),pp. 77-91
    [9]
    J.S.Wu, X.H.Rui, G.K.Long, et al. Angew. Chem. Int. Ed., 54 (2015),pp. 7354-7358
    [10]
    K.Zhang, X.P.Han, Z.Hu, et al. Chem. Soc. Rev., 44 (2015),pp. 699-728
    [11]
    Y.H.Dou, J.T.Xu, B.Y.Ruan, et al. Adv. Energy Mater., 6 (2016),p. 1501835
    [12]
    H.Li, M.Liang, W.W.Sun, et al. Adv. Funct. Mater., 26 (2016),pp. 1098-1103
    [13]
    L.Zhan, S.Q.Wang, L.X.Ding, et al. Electrochim. Acta, 135 (2014),pp. 35-41
    [14]
    W.J.Yu, L.L.Zhang, P.X.Hou, et al. Adv. Energy Mater., 6 (2016),p. 1501755
    [15]
    K.Z.Cao, L.F.Jiao, H.O.Liu, et al. Adv. Energy Mater., 5 (2015),p. 1401421
    [16]
    F.Han, D.Li, W.C.Li, et al. Adv. Funct. Mater., 23 (2013),pp. 1692-1700
    [17]
    Q.Y.An, F.Lv, Q.Q.Liu, et al. Nano Lett., 14 (2014),pp. 6250-6256
    [18]
    K.N.Zhao, M.Y.Wen, Y.F.Dong, et al. Adv. Energy Mater. (2016),p. 1601582
    [19]
    J.Sun, C.X.Lv, F.Lv, et al. ACS Nano, 11 (2017),pp. 6186-6193
    [20]
    G.Huang, L.L.Zhang, F.Zhang, et al. Nanoscale, 6 (2014),pp. 5509-5515
    [21]
    J.S.Cho, Y.J.Hong, Y.C.Kang ACS Nano, 9 (2015),pp. 4026-4035
    [22]
    Y.Zhao, Z.X.Feng, Z.J.Xu Nanoscale, 7 (2015),pp. 9520-9525
    [23]
    Y.H.Cheng, Z.Chen, H.B.Wu, et al. Adv. Funct. Mater., 26 (2016),pp. 1338-1346
    [24]
    Y.Zhao, X.F.Li, B.Yan, et al. Adv. Energy Mater., 6 (2016),p. 1502175
    [25]
    L.Xu, J.X.Xia, K.Wang, et al. Dalton Trans., 42 (2013),pp. 6468-6477
    [26]
    L.Xu, J.X.Xia, H.Xu, et al. J. Power Sources, 245 (2014),pp. 866-874
    [27]
    L.Xu, J.X.Xia, L.G.Wang, et al. Chem. Eur. J., 20 (2014),pp. 2244-2253
    [28]
    F.X.Ma, H.Hu, H.B.Wu, et al. Adv. Mater., 27 (2015),pp. 4097-4101
    [29]
    M.Ling, Y.N.Xu, H.Zhao, et al. Nano Energy, 12 (2015),pp. 178-185
    [30]
    J.S.Luo, X.H.Xia, Y.S.Luo, et al. Adv. Energy Mater., 3 (2013),pp. 737-743
    [31]
    Z.G.Wu, Y.J.Zhong, J.Liu, et al. J. Mater. Chem., A 3 (2015),pp. 10092-10099
    [32]
    H.Dong, H.Zhang, Y.L.Xu, et al. J. Power Sources, 300 (2015),pp. 104-111
    [33]
    A.Banerjee, V.Aravindan, S.Bhatnagar, et al. Nano Energy, 2 (2013),pp. 890-896
    [34]
    Z.Q.Li, B.Li, L.W.Yin, et al. ACS Appl. Mater. Interfaces, 6 (2014),pp. 8098-8107
    [35]
    N.Kang, J.H.Park, J.Choi, et al. Angew. Chem. Int. Ed., 51 (2012),pp. 6626-6630
    [36]
    X.H.Liu, W.P.Si, J.Zhang, et al. Sci. Rep., 4 (2014),pp. 7452-7459
    [37]
    D.Maiti, V.Aravindan, S.Madhavi, et al. J. Power Sources, 276 (2015),pp. 291-298
    [38]
    Q.Q.Xiong, J.P.Tu, X.Ge, et al. J. Power Sources, 274 (2015),pp. 1-7
    [39]
    K.S.Lee, S.Park, W.Y.Lee, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 2027-2034
    [40]
    X.H.Cao, B.Zheng, X.H.Rui, et al. Angew. Chem. Int. Ed., 53 (2014),pp. 1404-1409
    [41]
    Y.Y.Li, H.Y.Zhang, P.K.Shen Nano Energy, 13 (2015),pp. 563-572
    [42]
    R.H.Wang, C.H.Xu, M.Du, et al. Small, 10 (2014),pp. 2260-2269
    [43]
    X.C.Ren, Y.J.Zhai, L.Zhu, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 17205-17211
    [44]
    G.R.Li, M.Ling, Y.F.Ye, et al. Adv. Energy Mater., 5 (2015),p. 1500878
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (161) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return