Huanhuan Zhang, Mengyang Zhu, Wei Zhao, Song Li, Guang Feng. Molecular dynamics study of room temperature ionic liquids with water at mica surface. Green Energy&Environment, 2018, 3(2): 120-128. doi: 10.1016/j.gee.2017.11.002
Citation: Huanhuan Zhang, Mengyang Zhu, Wei Zhao, Song Li, Guang Feng. Molecular dynamics study of room temperature ionic liquids with water at mica surface. Green Energy&Environment, 2018, 3(2): 120-128. doi: 10.1016/j.gee.2017.11.002

Molecular dynamics study of room temperature ionic liquids with water at mica surface

doi: 10.1016/j.gee.2017.11.002
  • Water in room temperature ionic liquids (RTILs) could impose significant effects on their interfacial properties at a charged surface. Although the interfaces between RTILs and mica surfaces exhibit rich microstructure, the influence of water content on such interfaces is little understood, in particular, considering the fact that RTILs are always associated with water due to their hygroscopicity. In this work, we studied how different types of RTILs and different amounts of water molecules affect the RTIL-mica interfaces, especially the water distribution at mica surfaces, using molecular dynamics (MD) simulation. MD results showed that (1) there is more water and a thicker water layer adsorbed on the mica surface as the water content increases, and correspondingly the average location of K+ ions is farther from mica surface; (2) more water accumulated at the interface with the hydrophobic [Emim][TFSI] than in case of the hydrophilic [Emim][BF4] due to the respective RTIL hydrophobicity and ion size. A similar trend was also observed in the hydrogen bonds formed between water molecules. Moreover, the 2D number density map of adsorbed water revealed that the high-density areas of water seem to be related to K+ ions and silicon/aluminum atoms on mica surface. These results are of great importance to understand the effects of hydrophobicity/hydrophicility of RTIL and water on the interfacial microstructure at electrified surfaces.

     

  • loading
  • [1]
    E.Frackowiak, G.Lota, J.Pernak Appl. Phys. Lett., 86 (2005),p. 164104
    [2]
    K.K.Seddon Nat. Mater., 2 (2003),pp. 363-365
    [3]
    J.Wang, J.Luo, S.Feng, et al. Green Energy Environ., 1 (2016),pp. 43-61
    [4]
    P.Losada-Pérez, M.Khorshid, F.U.Renner PLoS One, 11 (2016)
    [5]
    S.-K.Ruokonen, C.Sanwald, M.Sundvik, et al. Environ. Sci. Technol., 50 (2016),pp. 7116-7125
    [6]
    A.H.Rantamäki, S.-K.Ruokonen, E.Sklavounos, et al. Sci. Rep., 7 (2017),p. 46673
    [7]
    A.Somers, P.Howlett, D.MacFarlane, et al. Lubricants, 1 (2013),pp. 3-21
    [8]
    C.Ye, W.Liu, Y.Chen, et al. Chem. Commun. (2001),pp. 2244-2245
    [9]
    A.Abate, D.J.Hollman, J.l.Teuscher, et al. J. Am. Chem. Soc., 135 (2013),pp. 13538-13548
    [10]
    Y.S.Nanayakkara, H.Moon, T.Payagala, et al. Anal. Chem., 80 (2008),pp. 7690-7698
    [11]
    R.Hayes, G.G.Warr, R.Atkin Phys. Chem. Chem. Phys., 12 (2010),pp. 1709-1723
    [12]
    J.Lu, F.Yan, J.Texter Prog. Polym. Sci., 34 (2009),pp. 431-448
    [13]
    B.D.Fitchett, J.C.Conboy J. Phys. Chem. B, 108 (2004),pp. 20255-20262
    [14]
    J.B.Rollins, B.D.Fitchett, J.C.Conboy J. Phys. Chem. B, 111 (2007),pp. 4990-4999
    [15]
    M.Mezger, H.Schröder, H.Reichert, et al. Science, 322 (2008),pp. 424-428
    [16]
    R.Atkin, G.G.Warr J. Phys. Chem. C, 111 (2007),pp. 5162-5168
    [17]
    J.L.Parker, D.L.Cho, P.M.Claesson J. Phys. Chem., 93 (1989),pp. 6121-6125
    [18]
    U.Raviv, P.Laurat, J.Klein Nature, 413 (2001),pp. 51-54
    [19]
    U.Raviv, J.Klein Science, 297 (2002),pp. 1540-1543
    [20]
    A.Ulcinas, G.Valdre, V.Snitka, et al. Langmuir, 27 (2011),pp. 10351-10355
    [21]
    G.B.Kaggwa, P.C.Nalam, J.I.Kilpatrick, et al. Langmuir, 28 (2012),pp. 6589-6594
    [22]
    Y.Liu, Y.Zhang, G.Wu, et al. J. Am. Chem. Soc., 128 (2006),pp. 7456-7457
    [23]
    S.Perkin, T.Albrecht, J.Klein Phys. Chem. Chem. Phys., 12 (2010),pp. 1243-1247
    [24]
    R.Singh Payal, S.Balasubramanian ChemPhysChem, 13 (2012),pp. 1764-1771
    [25]
    R.S.Payal, S.Balasubramanian J. Phys. Condens. Matter, 26 (2014),p. 284101
    [26]
    N.Nishi, H.Murakami, Y.Yasui, et al. Anal. Sci., 24 (2008),pp. 1315-1320
    [27]
    J.A.Widegren, A.Laesecke, J.W.Magee Chem. Commun., 12 (2005),pp. 1610-1612
    [28]
    Y.Wang, H.Li, S.Han J. Phys. Chem. B, 110 (2006),pp. 24646-24651
    [29]
    T.Welton Chem. Rev., 99 (1999),pp. 2071-2084
    [30]
    G.Feng, X.Jiang, R.Qiao, et al. ACS Nano, 8 (2014),pp. 11685-11694
    [31]
    A.M.Smith, M.A.Parkes, S.Perkin J. Phys. Chem. Lett., 5 (2014),pp. 4032-4037
    [32]
    R.Espinosa-Marzal, A.Arcifa, A.Rossi, et al. J. Phys. Chem. C, 118 (2014),pp. 6491-6503
    [33]
    K.Sakai, K.Okada, A.Uka, et al. Langmuir, 31 (2015),pp. 6085-6091
    [34]
    H.-W.Cheng, P.Stock, B.Moeremans, et al. Adv. Mater. Interfaces, 2 (2015),p. 1500159
    [35]
    X.Gong, A.Kozbial, L.Li Chem. Sci., 6 (2015),pp. 3478-3482
    [36]
    E.Lindahl, B.Hess, D.Van Der Spoel Mol. Model. Annu., 7 (2001),pp. 306-317
    [37]
    W.Humphrey, A.Dalke, K.Schulten J. Mol. Graph., 14 (1996),pp. 33-38
    [38]
    A.Heintz, J.K.Lehmann, C.Wertz, et al. J. Chem. Eng. Data, 50 (2005),pp. 956-960
    [39]
    H.Heinz, H.Koerner, K.L.Anderson, et al. Chem. Mater., 17 (2005),pp. 5658-5669
    [40]
    J.N.C.Lopes J. Phys. Chem. B, 108 (2004),pp. 2038-2047
    [41]
    H.-W.Cheng, J.-N.Dienemann, P.Stock, et al. Sci. Rep., 6 (2016),p. 30058
    [42]
    B.Docampo-Alvarez, V.Gomez-Gonzalez, H.Montes-Campos, et al. J. Phys. Condens. Matter, 28 (2016),pp. 0953-8984
    [43]
    J.M.Black, M.Zhu, P.Zhang, et al. Sci. Rep., 6 (2016),p. 32389
    [44]
    M.Ricci, P.Spijker, K.Voïtchovsky Nat. Commun., 5 (2014),p. 4400
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (160) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return