Hongping Li, Beibei Zhang, Wei Jiang, Wenshuai Zhu, Ming Zhang, Chao Wang, Jingyu Pang, Huaming Li. A comparative study of the extractive desulfurization mechanism by Cu(II) and Zn-based imidazolium ionic liquids. Green Energy&Environment, 2019, 4(1): 38-48. doi: 10.1016/j.gee.2017.10.003
Citation: Hongping Li, Beibei Zhang, Wei Jiang, Wenshuai Zhu, Ming Zhang, Chao Wang, Jingyu Pang, Huaming Li. A comparative study of the extractive desulfurization mechanism by Cu(II) and Zn-based imidazolium ionic liquids. Green Energy&Environment, 2019, 4(1): 38-48. doi: 10.1016/j.gee.2017.10.003

A comparative study of the extractive desulfurization mechanism by Cu(II) and Zn-based imidazolium ionic liquids

doi: 10.1016/j.gee.2017.10.003
  • A comparative study of the extractive desulfurization (EDS) mechanism by Cu(II) and Zn-based ILs ([C4mim]2[MCl4], M = Cu(II) or Zn) has been performed. It is found that the π–π interaction and C-H⋯π interaction play important roles in EDS for both Cu(II) and Zn-based ILs, which is different from Al, Fe-based ILs. In the gas phase models, the interaction energy between Zn-based ILs and dibenzothiophene (DBT) is stronger than the interaction energy of Cu(II)-based ILs. In order to consider the solvent effect, a generic ionic liquid of solvation model has been implemented, which is few considered in the previous calculations of EDS. It is interesting to find that the gap of interaction energies between Cu(II), Zn-based ILs and DBT are reduced when the solvent effect is considered. In addition, by combined discussion of currently theoretical and experimental evidences for metal-based ILs with different compositions, we firstly propose that the EDS performance should be influenced by the balance of the contribution of cation, metal-based anion, metal chlorides and the viscosity.

     

  • loading
  • [1]
    H.S.Gao, C.Guo, J.M.Xing, et al. Green Chem., 12 (2010),pp. 1220-1224
    [2]
    L.F.Ramirez-Verduzco, E.Torres-Garcia, R.Gomez-Quintana, et al. Catal. Today, 98 (2004),pp. 289-294
    [3]
    C.Song, X.L.Ma Appl. Catal. B, 41 (2003),pp. 207-238
    [4]
    P.S.Kulkarni, C.A.M.Afonso Green Chem., 12 (2010),pp. 1139-1149
    [5]
    W.Jiang, W.Zhu, H.Li, et al. Fuel, 140 (2015),pp. 590-596
    [6]
    N.H.Ko, J.S.Lee, E.S.Huh, et al. Energy Fuels, 22 (2008),pp. 1687-1690
    [7]
    H.S.Gao, S.J.Zeng, H.Y.He, et al. Sep. Sci. Technol., 49 (2014),pp. 1208-1214
    [8]
    W.S.Zhu, P.W.Wu, L.Yang, et al. Chem. Eng. J., 229 (2013),pp. 250-256
    [9]
    L.L.Ban, P.Liu, C.H.Ma, et al. Chin. Chem. Lett., 24 (2013),pp. 755-758
    [10]
    W.S.Zhu, J.T.Zhang, H.M.Li, et al. RSC Adv., 2 (2012),pp. 658-664
    [11]
    J.L.Wang, D.S.Zhao, K.X.Li Pet. Sci. Technol., 30 (2012),pp. 2417-2423
    [12]
    X.C.Chen, D.D.Song, C.Asumana, et al. J. Mol. Catal. A Chem., 359 (2012),pp. 8-13
    [13]
    F.T.Li, Y.Liu, Z.M.Sun, et al. Energy Fuels, 24 (2010),pp. 4285-4289
    [14]
    F.T.Li, R.H.Liu, J.H.Wen, et al. Green Chem., 11 (2009),pp. 883-888
    [15]
    R.Schmidt Energy Fuels, 22 (2008),pp. 1774-1778
    [16]
    F.T.Li, R.H.Liu, Z.M.Sun China Pet. Process. Petrochem. Technol. (2008),pp. 53-57
    [17]
    S.G.Zhang, Q.L.Zhang, Z.C.Zhang Ind. Eng. Chem. Res., 43 (2004),pp. 614-622
    [18]
    C.Huang, B.Chen, J.Zhang, et al. Energy Fuels, 18 (2004),pp. 1862-1864
    [19]
    A.Bosmann, L.Datsevich, A.Jess, et al. Chem. Commun. (2001),pp. 2494-2495
    [20]
    J.Wang, J.Luo, S.Feng, et al. Green Energy Environ., 1 (2016),pp. 43-61
    [21]
    W.Haojie, H.Jianxun, Y.Cairong, et al. China Pet. Process. Petrochem. Technol., 16 (2014),pp. 65-70
    [22]
    Y.Q.Jiang, W.S.Zhu, H.M.Li, et al. ChemSusChem, 4 (2011),pp. 399-403
    [23]
    M.Chen, Y.Luo, G.F.Li, et al. Korean J. Chem. Eng., 26 (2009),pp. 1563-1567
    [24]
    M.Chen, D.Li, Y.Luo, et al. J. Ind. Eng. Chem., 17 (2011),pp. 14-17
    [25]
    J.H.Kim, J.Palgunadi, D.K.Mukherjee, et al. Phys. Chem. Chem. Phys., 12 (2010),pp. 14196-14202
    [26]
    X.C.Chen, S.M.Ming, X.Y.Wu, et al. Sep. Sci. Technol., 48 (2013),pp. 2317-2323
    [27]
    E.S.Huh, A.Zazybin, J.Palgunadi, et al. Energy Fuels, 23 (2009),pp. 3032-3038
    [28]
    T.Sasaki, M.Tada, C.Zhong, et al. J. Mol. Catal. A Chem., 279 (2008),pp. 200-209
    [29]
    R.Lu, Z.Qu, H.Yu, et al. J. Mol. Graph. Model., 36 (2012),pp. 36-41
    [30]
    R.Q.Lu, P.Gu, D.Liu, et al. C. R. Chim., 16 (2013),pp. 1118-1126
    [31]
    R.Lu, D.Liu, S.Wang, et al. Bull. Korean Chem. Soc., 34 (2013),pp. 1814-1822
    [32]
    R.Lü, J.Lin, Z.Qu Comput. Theor. Chem., 1002 (2012),pp. 49-58
    [33]
    R.Lu, D.Liu, Y.Lu, et al. J. Iran. Chem. Soc., 10 (2013),pp. 733-744
    [34]
    R.Lü, J.Lin, Z.Qu Struct. Chem., 24 (2013),pp. 507-515
    [35]
    Y.Nie, X.Yuan J. Theor. Comput. Chem., 10 (2011),pp. 31-40
    [36]
    R.Anantharaj, T.Banerjee AIChE J., 57 (2011),pp. 749-764
    [37]
    J.M.Martinez-Magadan, R.Oviedo-Roa, P.Garcia, et al. Fuel Process. Technol., 97 (2012),pp. 24-29
    [38]
    A.J.Hernández-Maldonado, R.T.Yang Catal. Rev. – Sci. Eng., 46 (2004),pp. 111-150
    [39]
    A.Takahashi, F.H.Yang, R.T.Yang Ind. Eng. Chem. Res., 41 (2002),pp. 2487-2496
    [40]
    F.H.Yang, A.J.Hernandez-Maldonado, R.T.Yang Sep. Sci. Technol., 39 (2004),pp. 1717-1732
    [41]
    H.P.Li, Y.H.Chang, W.S.Zhu, et al. J. Phys. Chem. B, 119 (2015),pp. 5995-6009
    [42]
    A.V.Marenich, C.J.Cramer, D.G.Truhlar J. Phys. Chem. B, 113 (2009),pp. 6378-6396
    [43]
    V.S.Bernales, A.V.Marenich, R.Contreras, et al. J. Phys. Chem. B, 116 (2012),pp. 9122-9129
    [44]
    U.C.Singh, P.A.Kollman J. Comput. Chem., 5 (1984),pp. 129-145
    [45]
    E.R.Johnson, S.Keinan, P.Mori-Sanchez, et al. J. Am. Chem. Soc., 132 (2010),pp. 6498-6506
    [46]
    M.J.Frisch
    [47]
    H.S.Kim, J.J.Kim, H.Kim, et al. J. Catal., 220 (2003),pp. 44-46
    [48]
    J.Palgunadi, O.S.Kwon, H.Lee, et al. Catal. Today., 98 (2004),pp. 511-514
    [49]
    G.Li, D.M.Camaioni, J.E.Amonette, et al. J. Phys. Chem. B, 114 (2010),pp. 12614-12622
    [50]
    F.Wang, C.Z.Xu, Z.Li, et al. J. Mol. Catal. A Chem., 385 (2014),pp. 133-140
    [51]
    S.Caporali, C.Chiappe, T.Ghilardi, et al. ChemPhysChem, 13 (2012),pp. 1885-1892
    [52]
    E.A.Pidko, V.Degirmenci, van SantenR.A., E.J.M.Hensen Inorg. Chem., 49 (2010),pp. 10081-10091
    [53]
    H.P.Li, W.S.Zhu, Y.H.Chang, et al. J. Mol. Graph. Model., 59 (2015),pp. 40-49
    [54]
    Z.X.Lyu, T.Zhou, L.F.Chen, et al. Chem. Eng. Sci., 113 (2014),pp. 45-53
    [55]
    B.M.Su, S.G.Zhang, Z.C.Zhang J. Phys. Chem. B, 108 (2004),pp. 19510-19517
    [56]
    A.L.Revelli, F.Mutelet, J.N.Jaubert J. Phys. Chem. B, 114 (2010),pp. 4600-4608
    [57]
    E.I.Izgorodina, J.L.Hodgson, D.C.Weis, et al. J. Phys. Chem. B, 119 (2015),pp. 11748-11759
    [58]
    C.F.Zipp, H.W.Dirr, M.A.Fernandes, et al. Cryst. Growth Des., 13 (2013),pp. 3463-3474
    [59]
    H.N.Liu, Z.T.Zhang, J.E.Bara, et al. J. Phys. Chem. B, 118 (2014),pp. 255-264
    [60]
    H.P.Li, Y.H.Chang, W.S.Zhu, et al. Phys. Chem. Chem. Phys., 17 (2015),pp. 28729-28742
    [61]
    Y.Mo, L.Song, Y.Lin J. Phys. Chem. A, 111 (2007),pp. 8291-8301
    [62]
    F.S.Mjalli, O.U.Ahmed, T.Al-Wahaibi, et al. Rev. Chem. Eng., 30 (2014),pp. 337-378
    [63]
    W.Jiang, W.S.Zhu, H.M.Li, et al. Chem. Eng. Technol., 37 (2014),pp. 36-42
    [64]
    P.Wang, D.X.Wang, J.S.Gao, et al. Chem. J. Chin. Univ., 27 (2006),pp. 1505-1508
    [65]
    Y.L.Yang, Y.Kou Chem. Commun. (2004),pp. 226-227
    [66]
    N.V.Likhanova, D.Guzmán-Lucero, E.A.Flores, et al. Mol. Divers., 14 (2010),pp. 777-787
    [67]
    Y.Zou, H.Xu, G.Wu, et al. J. Phys. Chem. B, 113 (2009),pp. 2066-2070
    [68]
    W.Jiang, W.S.Zhu, Y.H.Chang, et al. Chem. Eng. J., 250 (2014),pp. 48-54
    [69]
    J.J.Gao, H.Q.Li, H.X.Zhang, et al. Ind. Eng. Chem. Res., 51 (2012),pp. 4682-4691
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (137) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return