Linqin Mu, Yaxiang Lu, Xiaoyan Wu, Yuejun Ding, Yong-Sheng Hu, Hong Li, Liquan Chen, Xuejie Huang. Anthraquinone derivative as high-performance anode material for sodium-ion batteries using ether-based electrolytes. Green Energy&Environment, 2018, 3(1): 63-70. doi: 10.1016/j.gee.2017.09.002
Citation: Linqin Mu, Yaxiang Lu, Xiaoyan Wu, Yuejun Ding, Yong-Sheng Hu, Hong Li, Liquan Chen, Xuejie Huang. Anthraquinone derivative as high-performance anode material for sodium-ion batteries using ether-based electrolytes. Green Energy&Environment, 2018, 3(1): 63-70. doi: 10.1016/j.gee.2017.09.002

Anthraquinone derivative as high-performance anode material for sodium-ion batteries using ether-based electrolytes

doi: 10.1016/j.gee.2017.09.002
  • Organic materials, especially the carbonyl compounds, are promising anode materials for room temperature sodium-ion batteries owing to their high reversible capacity, structural diversity as well as eco-friendly synthesis from bio-mass. Herein, we report a novel anthraquinone derivative, C14H6O4Na2 composited with carbon nanotube (C14H6O4Na2-CNT), used as an anode material for sodium-ion batteries in ether-based electrolyte. The C14H6O4Na2-CNT electrode delivers a reversible capacity of 173 mAh g−1 and an ultra-high initial Coulombic efficiency of 98% at the rate of 0.1 C. The capacity retention is 82% after 50 cycles at 0.2 C and a good rate capability is displayed at 2 C. Furthermore, the average Na insertion voltage of 1.27 V vs. Na+/Na makes it a unique and safety battery material, which would avoid Na plating and formation of solid electrolyte interface. Our contribution provides new insights for designing developed organic anode materials with high initial Coulombic efficiency and improved safety capability for sodium-ion batteries.

     

  • loading
  • [1]
    M.Armand, J.-M.Tarascon Nature, 451 (7),pp. 652-657
    [2]
    H.Pan, Y.-S.Hu, L.Chen Energy Environ. Sci., 6 (8),pp. 2338-2360
    [3]
    M.D.Slater, D.Kim, E.Lee, et al. Adv. Funct. Mater., 23 (8),pp. 947-958
    [4]
    B.L.Ellis, L.F.Nazar Curr. Opin. Solid State Mater. Sci., 16 (4),pp. 168-177
    [5]
    L.P.Wang, L.Yu, X.Wang, et al. J. Mater. Chem. A, 3 (18),pp. 9353-9378
    [6]
    M.H.Han, E.Gonzalo, G.Singh, et al. Energy Environ. Sci., 8 (1),pp. 81-102
    [7]
    Y.Zhong, X.Xia, F.Shi, et al. Adv. Sci., 3 (5),p. 1500286
    [8]
    V.Palomares, P.Serras, I.Villaluenga, et al. Energy Environ. Sci., 5 (3),pp. 5884-5901
    [9]
    L.Mu, S.Xu, Y.Li, et al. Adv. Mater., 27 (43),pp. 6928-6933
    [10]
    L.-Q.Mu, Y.-S.Hu, L.-Q.Chen Chin. Phys. B, 24 (3),p. 038202
    [11]
    N.Yabuuchi, S.Komaba Sci. Technol. Adv. Mater., 15 (4),p. 043501
    [12]
    M.Dahbi, N.Yabuuchi, K.Kubota, et al. Phys. Chem. Chem. Phys., 16 (29),pp. 15007-15028
    [13]
    Y.Kim, K.H.Ha, S.M.Oh, et al. Chemistry, 20 (38),pp. 11980-11992
    [14]
    M.-S.Balogun, Y.Luo, W.Qiu, et al. Carbon, 98 (2016),pp. 162-178
    [15]
    E.Irisarri, A.Ponrouch, M.R.Palacin J. Electrochem. Soc., 162 (14),pp. A2476-A2482
    [16]
    Y.Li, Y.-S.Hu, X.Qi, et al. Energy Storage Mater., 5 (2016),pp. 191-197
    [17]
    Y.Li, Y.Lu, C.Zhao, et al. Energy Storage Mater., 7 (2017),pp. 130-151
    [18]
    D.Xie, X.Xia, Y.Zhong, et al. Adv. Energy Mater., 7 (3)
    [19]
    M.Lao, Y.Zhang, W.Luo, et al. Adv. Mater. (2017)
    [20]
    L.Mu, L.Ben, Y.-S.Hu, et al. J. Mater. Chem. A, 4 (2016),pp. 7141-7147
    [21]
    H.Pan, X.Lu, X.Yu, et al. Adv. Energy Mater., 3 (9),pp. 1186-1194
    [22]
    X.Li, X.Zhu, J.Liang, et al. J. Electrochem. Soc., 161 (6),pp. A1181-A1187
    [23]
    Y.Wang, R.Xiao, Y.-S.Hu, et al. Nat. Commun., 6 (2015),p. 6954
    [24]
    L.Zhao, H.L.Pan, Y.S.Hu, et al. Chin. Phys. B, 21 (2),p. 028201
    [25]
    S.Guo, J.Yi, Y.Sun, et al. Energy Environ. Sci., 9 (10),pp. 2978-3006
    [26]
    Y.L.Liang, Z.L.Tao, J.Chen Adv. Energy Mater., 2 (7),pp. 742-769
    [27]
    B.Häupler, A.Wild, U.S.Schubert Adv. Energy Mater., 5 (11),p. 1402034
    [28]
    H.Kim, J.E.Kwon, B.Lee, et al. Chem. Mater., 27 (21),pp. 7258-7264
    [29]
    M.López-Herraiz, E.Castillo-Martínez, J.Carretero-González, et al. Energy Environ. Sci., 8 (11),pp. 3233-3241
    [30]
    Q.Zhao, Y.Lu, J.Chen Adv. Energy Mater., 7 (8)
    [31]
    H.Wu, K.Wang, Y.Meng, et al. J. Mater. Chem. A, 1 (21),pp. 6366-6372
    [32]
    H.Banda, D.Damien, K.Nagarajan, et al. J. Mater. Chem. A, 3 (19),pp. 10453-10458
    [33]
    L.Chen, J.Wu, A.Zhang, et al. J. Mater. Chem. A, 3 (31),pp. 16033-16039
    [34]
    J.Li, G.Zhang, D.M.Holm, et al. Chem. Mater., 27 (16),pp. 5765-5774
    [35]
    X.Liao, Y.Ding, L.Chen, et al. Chem. Commun. (Camb), 51 (50),pp. 10127-10130
    [36]
    Z.Song, Y.Qian, T.Zhang, et al. Adv. Sci., 2 (9),p. 1500024
    [37]
    L.Zhao, J.M.Zhao, Y.S.Hu, et al. Adv. Energy Mater., 2 (8),pp. 962-965
    [38]
    Y.Park, D.-S.Shin, S.H.Woo, et al. Adv. Mater., 24 (26),pp. 3562-3567
    [39]
    C.Guo, K.Zhang, Q.Zhao, et al. Chem. Commun., 51 (50),pp. 10244-10247
    [40]
    S.Wang, L.Wang, Z.Zhu, et al. Angew. Chem., 126 (23),pp. 6002-6006
    [41]
    X.Wu, S.Jin, Z.Zhang, et al. Sci. Adv., 1 (8),p. e1500330
    [42]
    X.Y.Wu, J.Ma, Q.D.Ma, et al. J. Mater. Chem. A, 3 (25),pp. 13193-13197
    [43]
    X.Xia, D.Chao, Y.Zhang, et al. Small, 12 (22),pp. 3048-3058
    [44]
    W.Wan, H.Lee, X.Q.Yu, et al. RSC Adv., 4 (38),pp. 19878-19882
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (180) PDF downloads(28) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return