Wangjia Tang, Jianbo Wu, Xiuli Wang, Xinhui Xia, Jiangping Tu. Integrated carbon nanospheres arrays as anode materials for boosted sodium ion storage. Green Energy&Environment, 2018, 3(1): 50-55. doi: 10.1016/j.gee.2017.08.001
Citation: Wangjia Tang, Jianbo Wu, Xiuli Wang, Xinhui Xia, Jiangping Tu. Integrated carbon nanospheres arrays as anode materials for boosted sodium ion storage. Green Energy&Environment, 2018, 3(1): 50-55. doi: 10.1016/j.gee.2017.08.001

Integrated carbon nanospheres arrays as anode materials for boosted sodium ion storage

doi: 10.1016/j.gee.2017.08.001
  • Developing cost-effective advanced carbon anode is critical for innovation of sodium ion batteries. Herein, we develop a powerful combined method for rational synthesis of free-standing binder-free carbon nanospheres arrays via chemical bath plus hydrothermal process. Impressively, carbon spheres with diameters of 150–250 nm are randomly interconnected with each other forming highly porous arrays. Positive advantages including large porosity, high surface and strong mechanical stability are combined in the carbon nanospheres arrays. The obtained carbon nanospheres arrays are tested as anode material for sodium ion batteries (SIBs) and deliver a high reversible capacity of 102 mAh g−1 and keep a capacity retention of 95% after 100 cycles at a current density of 0.25 A g−1 and good rate performance (65 mAh g−1 at a high current density of 2 A g−1). The good electrochemical performance is attributed to the stable porous nanosphere structure with fast ion/electron transfer characteristics.

     

  • loading
  • [1]
    T.Shen, X.-H.Xia, D.Xie, et al. J. Mater. Chem. A, 5 (2017),pp. 11197-11203
    [2]
    X.Sun, X.Zhu, X.Yang, et al. Green Energy Environ., 2 (2017),pp. 160-167
    [3]
    Q.Li, J.Chen, L.Fan, et al. Green Energy Environ., 1 (2016),pp. 18-42
    [4]
    Z.Tai, Y.Liu, Q.Zhang, et al. Green Energy Environ. (2017)
    [5]
    Y.Zhong, X.Xia, J.Zhan, et al. J. Mater. Chem. A, 4 (2016),pp. 11207-11213
    [6]
    Y.Zhong, X.Xia, F.Shi, et al. Adv. Sci., 3 (2016),p. 1500286
    [7]
    X.H.Xia, Y.Q.Zhang, Z.X.Fan, et al. Adv. Energy Mater., 5 (2015),p. 1401709
    [8]
    X.H.Xia, Y.Q.Zhang, D.L.Chao, et al. Energy Environ. Sci., 8 (2015),pp. 1559-1568
    [9]
    X.Yan, H.Ye, X.-L.Wu, et al. J. Mater. Chem. A, 5 (2017),pp. 16622-16629
    [10]
    Z.Yao, X.Xia, Y.Zhong, et al. J. Mater. Chem. A, 5 (2017),pp. 8916-8921
    [11]
    C.Zhou, X.Xia, Y.Wang, et al. J. Mater. Chem. A, 5 (2017),pp. 1394-1399
    [12]
    D.Xie, X.H.Xia, Y.Zhong, et al. Adv. Energy Mater., 7 (2017),p. 1601804
    [13]
    M.Chen, D.Chao, J.Liu, et al. Adv. Funct. Mater., 27 (2017),p. 1606232
    [14]
    M.Chen, W.Zhou, M.Qi, et al. J. Power Sources, 342 (2017),pp. 964-969
    [15]
    D.Chao, P.Liang, Z.Chen, et al. ACS Nano, 10 (2016),pp. 10211-10219
    [16]
    D.Chao, C.Zhu, P.Yang, et al. Nat. Commun., 7 (2016),p. 12122
    [17]
    K.-L.Hong, L.Qie, R.Zeng, et al. J. Mater. Chem. A, 2 (2014),pp. 12733-12738
    [18]
    X.Xie, T.Makaryan, M.Zhao, et al. Adv. Energy Mater., 6 (2016),p. 1502161
    [19]
    D.Xie, W.J.Tang, Y.D.Wang, et al. Nano Res., 9 (2016),pp. 1618-1629
    [20]
    L.Yan, J.Yu, J.Houston, et al. Green Energy Environ., 2 (2017),pp. 84-99
    [21]
    Y.Cao, L.Xiao, M.L.Sushko, et al. Nano Lett., 12 (2012),pp. 3783-3787
    [22]
    H.Wang, Y.Zhang, W.Sun, et al. J. Power Sources, 307 (2016),pp. 17-24
    [23]
    L.Fu, K.Tang, K.Song, et al. Nanoscale, 6 (2014),pp. 1384-1389
    [24]
    H.Wang, G.Jia, Y.Guo, et al. Adv. Mater. Inter., 3 (2016),p. 1600375
    [25]
    K.Tang, L.Fu, R.J.White, et al. Adv. Energy Mater., 2 (2012),pp. 873-877
    [26]
    Z.Wang, L.Qie, L.Yuan, et al. Carbon, 55 (2013),pp. 328-334
    [27]
    T.Chen, L.Pan, T.Lu, et al. J. Mater. Chem. A, 2 (2014),pp. 1263-1267
    [28]
    Y.N.Ko, Y.C.Kang Chem. Commun., 50 (2014),pp. 12322-12324
    [29]
    G.Zheng, S.W.Lee, Z.Liang, et al. Nat. Nanotechnol., 9 (2014),pp. 618-623
    [30]
    Y.Zhong, X.Xia, J.Zhan, et al. J. Mater. Chem. A, 4 (2016),pp. 18717-18722
    [31]
    S.-W.Kim, D.-H.Seo, X.Ma, et al. Adv. Energy Mater., 2 (2012),pp. 710-721
    [32]
    H.Zhang, F.Yu, W.Kang, et al. Carbon, 95 (2015),pp. 354-363
    [33]
    W.Lv, F.Wen, J.Xiang, et al. Electrochim. Acta, 176 (2015),pp. 533-541
    [34]
    D.J.Ryu, R.G.Oh, Y.D.Seo, et al. Environ. Sci. Pollut. Res. Int., 22 (2015),pp. 10405-10412
    [35]
    Z.Li, Z.Xu, X.Tan, et al. Energy Environ. Sci., 6 (2013),pp. 871-878
    [36]
    J.Jiang, J.Zhu, W.Ai, et al. Energy Environ. Sci., 7 (2014),pp. 2670-2679
    [37]
    H.Song, N.Li, H.Cui, et al. Nano Energy, 4 (2014),pp. 81-87
    [38]
    K.Zhang, X.Li, J.Liang, et al. Electrochim. Acta, 155 (2015),pp. 174-182
    [39]
    X.H.Xia, Z.L.Ku, D.Zhou, et al. Mater. Horiz., 3 (2016),pp. 588-595
    [40]
    Q.Xiong, C.Zheng, H.Chi, et al. Nanotechnology, 28 (2016),p. 055405
    [41]
    Q.Q.Xiong, Z.G.Ji J. Alloys Compd., 673 (2016),pp. 215-219
    [42]
    Q.Xiong, H.Chi, J.Zhang, et al. J. Alloys Compd., 688, Part B (2016),pp. 729-735
    [43]
    S.Deng, Y.Zhong, Y.Zeng, et al. Adv. Mater., 29 (2017),p. 1700748
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (127) PDF downloads(23) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return