Jiajie Cen, Qiyuan Wu, Mingzhao Liu, Alexander Orlov. Developing new understanding of photoelectrochemical water splitting via in-situ techniques: A review on recent progress. Green Energy&Environment, 2017, 2(2): 100-111. doi: 10.1016/j.gee.2017.03.001
Citation: Jiajie Cen, Qiyuan Wu, Mingzhao Liu, Alexander Orlov. Developing new understanding of photoelectrochemical water splitting via in-situ techniques: A review on recent progress. Green Energy&Environment, 2017, 2(2): 100-111. doi: 10.1016/j.gee.2017.03.001

Developing new understanding of photoelectrochemical water splitting via in-situ techniques: A review on recent progress

doi: 10.1016/j.gee.2017.03.001
  • Photoelectrochemical (PEC) water splitting is a promising technology for solar hydrogen production to build a sustainable, renewable and clean energy economy. Given the complexity of the PEC water splitting processes, it is important to note that developing in-situ techniques for studying PEC water splitting presents a formidable challenge. This review is aimed at highlighting advantages and disadvantages of each technique, while offering a pathway of potentially combining several techniques to address different aspects of interfacial processes in PEC water splitting. We reviewed recent progress in various techniques and approaches utilized to study PEC water splitting, focusing on spectroscopic and scanning-probe methods.

     

  • These authors contributed equally to this work.
  • loading
  • [1]
    J.G.Mavroides, J.A.Kafalas, D.F.Kolesar Appl. Phys. Lett., 28 (1976),pp. 241-243
    [2]
    T.Watanabe, A.Fujishima, K.-i.Honda Bull. Chem. Soc. Jpn., 49 (1976),pp. 355-358
    [3]
    M.S.Wrighton, A.B.Ellis, P.T.Wolczanski, et al. J. Am. Chem. Soc., 98 (1976),pp. 2774-2779
    [4]
    R.C.Armstrong, C.Wolfram, K.P.de Jong, et al. Nat. Energy, 1 (2016),p. 15020
    [5]
    M.Gratzel Nature, 414 (2001),pp. 338-344
    [6]
    M.G.Walter, E.L.Warren, J.R.McKone, et al. Chem. Rev., 110 (2010),pp. 6446-6473
    [7]
    T.Hisatomi, J.Kubota, K.Domen Chem. Soc. Rev., 43 (2014),pp. 7520-7535
    [8]
    N.S.Lewis Science, 351 (2016),p. 1920
    [9]
    X.Shi, L.Cai, M.Ma, et al. ChemSusChem, 8 (2015),pp. 3192-3203
    [10]
    N.S.Lewis J. Electroanal. Chem., 508 (2001),pp. 1-10
    [11]
    B.D.Alexander, P.J.Kulesza, I.Rutkowska, et al. J. Mater. Chem., 18 (2008),pp. 2298-2303
    [12]
    K.Maeda, K.Domen J. Phys. Chem. Lett., 1 (2010),pp. 2655-2661
    [13]
    T.Wang, Z.Luo, C.Li, et al. Chem. Soc. Rev., 43 (2014),pp. 7469-7484
    [14]
    K.T.Fountaine, H.J.Lewerenz, H.A.Atwater Nat. Commun., 7 (2016),p. 13706
    [15]
    L.M.Peter J. Solid State Electrochem., 17 (2012),pp. 315-326
    [16]
    I.Roger, M.A.Shipman, M.D.Symes Nat. Rev. Chem., 1 (2017),p. 0003
    [17]
    J.Gu, J.A.Aguiar, S.Ferrere, et al. Nat. Energy, 2 (2017),p. 16192
    [18]
    B.H.Simpson, J.Rodríguez-López Anal. Methods UK, 7 (2015),pp. 7029-7041
    [19]
    P.Migowski, A.F.Feil Recycl. Catal., 3 (2016),pp. 1-12
    [20]
    M.R.Nellist, F.A.Laskowski, F.Lin, et al. Acc. Chem. Res., 49 (2016),pp. 733-740
    [21]
    R.Abe J. Photochem. Photobiol. C Photochem. Rev., 11 (2010),pp. 179-209
    [22]
    S.T.Kochuveedu J. Nanomater., 2016 (2016),pp. 1-12
    [23]
    L.M.Peter Chem. Rev., 90 (1990),pp. 753-769
    [24]
    A.G.Tamirat, J.Rick, A.A.Dubale, et al. Nanoscale Horiz., 1 (2016),pp. 243-267
    [25]
    S.Chen, S.S.Thind, A.Chen Electrochem. Commun., 63 (2016),pp. 10-17
    [26]
    J.Marsh, D.Gorse Electrochim. Acta, 43 (1998),pp. 659-670
    [27]
    S.R.Morrison
    [28]
    H.Liu, X.Z.Li, Y.J.Leng, et al. J. Phys. Chem. B, 107 (2003),pp. 8988-8996
    [29]
    T.Lopes, L.Andrade, H.A.Ribeiro, et al. Int. J. Hydrogen Energy, 35 (2010),pp. 11601-11608
    [30]
    K.Shimizu, A.Lasia, J.F.Boily Langmuir, 28 (2012),pp. 7914-7920
    [31]
    B.Klahr, S.Gimenez, F.Fabregat-Santiago, et al. J. Am. Chem. Soc., 134 (2012),pp. 4294-4302
    [32]
    B.Klahr, S.Gimenez, F.Fabregat-Santiago, et al. Energy Environ. Sci., 5 (2012),pp. 7626-7636
    [33]
    S.Gimenez, H.K.Dunn, P.Rodenas, et al. J. Electroanal. Chem., 668 (2012),pp. 119-125
    [34]
    Y.Wang, X.Cui, Y.Zhang, et al. J. Mater. Sci. Technol., 29 (2013),pp. 123-127
    [35]
    M.I.Diez-Garcia, R.Gomez ACS Appl. Mater. Interfaces, 8 (2016),pp. 21387-21397
    [36]
    W.H.Leng, Z.Zhang, J.Q.Zhang, et al. J. Phys. Chem. B, 109 (2005),pp. 15008-15023
    [37]
    L.Bertoluzzi, J.Bisquert J. Phys. Chem. Lett., 3 (2012),pp. 2517-2522
    [38]
    H.S.Jarrett J. Appl. Phys., 52 (1981),pp. 4681-4689
    [39]
    M.Liu, J.L.Lyons, D.Yan, et al. Adv. Funct. Mater., 26 (2016),pp. 219-225
    [40]
    J.Cen, Q.Wu, D.Yan, et al. Phys. Chem. Chem. Phys., 19 (2017),pp. 2760-2767
    [41]
    K.G.Upul Wijayantha, S.Saremi-Yarahmadi, L.M.Peter Phys. Chem. Chem. Phys., 13 (2011),pp. 5264-5270
    [42]
    B.Klahr, S.Gimenez, F.Fabregat-Santiago, et al. J. Am. Chem. Soc., 134 (2012),pp. 16693-16700
    [43]
    D.Trinh, M.Keddam, X.R.Nóvoa, et al. Electrochim. Acta, 131 (2014),pp. 28-35
    [44]
    E.A.Ponomarev, L.M.Peter J. Electroanal. Chem., 396 (1995),pp. 219-226
    [45]
    E.A.Ponomarev, L.M.Peter J. Electroanal. Chem., 397 (1995),pp. 45-52
    [46]
    L.M.Peter, E.A.Ponomarev, D.J.Fermín J. Electroanal. Chem., 427 (1997),pp. 79-96
    [47]
    L.M.Peter, K.G.U.Wijayantha, A.A.Tahir Faraday Discuss., 155 (2012),pp. 309-322
    [48]
    D.Klotz, D.S.Ellis, H.Dotan, et al. Phys. Chem. Chem. Phys., 18 (2016),pp. 23438-23457
    [49]
    L.M.Peter, D.Vanmaekelbergh
    [50]
    H.K.Dunn, J.M.Feckl, A.Muller, et al. Phys. Chem. Chem. Phys., 16 (2014),pp. 24610-24620
    [51]
    A.G.Hufnagel, K.Peters, A.Müller, et al. Adv. Funct. Mater., 26 (2016),pp. 4435-4443
    [52]
    F.Le Formal, S.R.Pendlebury, M.Cornuz, et al. J. Am. Chem. Soc., 136 (2014),pp. 2564-2574
    [53]
    Q.Zeng, J.Bai, J.Li, et al. J. Mater. Chem. A, 3 (2015),pp. 4345-4353
    [54]
    J.Su, L.Guo, N.Bao, et al. Nano Lett., 11 (2011),pp. 1928-1933
    [55]
    J.Krüger, R.Plass, M.Grätzel, et al. J. Phys. Chem. B, 107 (2003),pp. 7536-7539
    [56]
    L.Wang, X.Zhou, N.T.Nguyen, et al. Adv. Mater., 28 (2016),pp. 2432-2438
    [57]
    C.Ding, Z.Wang, J.Shi, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 7086-7091
    [58]
    J.E.Thorne, J.-W.Jang, E.Y.Liu, et al. Chem. Sci., 7 (2016),pp. 3347-3354
    [59]
    J.Halme Phys. Chem. Chem. Phys., 13 (2011),pp. 12435-12446
    [60]
    A.C.Fisher, L.M.Peter, E.A.Ponomarev, et al. J. Phys. Chem. B, 104 (2000),pp. 949-958
    [61]
    J.I.Pankove
    [62]
    A.Yamakata, J.J.M.Vequizo, M.Kawaguchi J. Phys. Chem. C, 119 (2015),pp. 1880-1885
    [63]
    J.B.Baxter, C.Richter, C.A.Schmuttenmaer Annu. Rev. Phys. Chem., 65 (2014),pp. 423-447
    [64]
    G.Boschloo, A.Hagfeldt Inorg. Chim. Acta, 361 (2008),pp. 729-734
    [65]
    M.R.Morris, S.R.Pendlebury, J.Hong, et al. Adv. Mater., 28 (2016),pp. 7123-7128
    [66]
    K.Appavoo, M.Liu, C.T.Black, et al. Nano Lett., 15 (2015),pp. 1076-1082
    [67]
    K.Koichumanova, A.Visan, B.Geerdink, et al. Catal. Today, 283 (2017),pp. 185-194
    [68]
    K.Appavoo, M.Liu, M.Y.Sfeir Appl. Phys. Lett., 104 (2014),p. 133101
    [69]
    F.M.Pesci, A.J.Cowan, B.D.Alexander, et al. J. Phys. Chem. Lett., 2 (2011),pp. 1900-1903
    [70]
    A.J.Cowan, J.Tang, W.Leng, et al. J. Phys. Chem. C, 114 (2010),pp. 4208-4214
    [71]
    F.M.Pesci, G.Wang, D.R.Klug, et al. J. Phys. Chem. C, 117 (2013),pp. 25837-25844
    [72]
    Y.Ma, S.R.Pendlebury, A.Reynal, et al. Chem. Sci., 5 (2014),pp. 2964-2973
    [73]
    M.Barroso, C.A.Mesa, S.R.Pendlebury, et al. Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 15640-15645
    [74]
    S.R.Pendlebury, A.J.Cowan, M.Barroso, et al. Energy Environ. Sci., 5 (2012),pp. 6304-6312
    [75]
    S.R.Pendlebury, M.Barroso, A.J.Cowan, et al. Chem. Commun., 47 (2011),pp. 716-718
    [76]
    A.Paracchino, J.C.Brauer, J.-E.Moser, et al. J. Phys. Chem. C, 116 (2012),pp. 7341-7350
    [77]
    F.Le Formal, E.Pastor, S.D.Tilley, et al. J. Am. Chem. Soc., 137 (2015),pp. 6629-6637
    [78]
    Y.Ma, C.A.Mesa, E.Pastor, et al. ACS Energy Lett., 1 (2016),pp. 618-623
    [79]
    Y.Ma, A.Kafizas, S.R.Pendlebury, et al. Adv. Funct. Mater., 26 (2016),pp. 4951-4960
    [80]
    X.Chen, S.N.Choing, D.J.Aschaffenburg, et al. J. Am. Chem. Soc., 139 (2017),pp. 1830-1841
    [81]
    D.M.Herlihy, M.M.Waegele, X.Chen, et al. Nat. Chem., 8 (2016),pp. 549-555
    [82]
    M.Zhang, M.de Respinis, H.Frei Nat. Chem., 6 (2014),pp. 362-367
    [83]
    K.Wille Rep. Prog. Phys., 54 (1991),pp. 1005-1067
    [84]
    G.Margaritondo J. Synchrotron. Radiat., 2 (1995),pp. 148-154
    [85]
    F.W.Lytle J. Synchrotron. Radiat., 6 (1999),pp. 123-134
    [86]
    S.Bordiga, E.Groppo, G.Agostini, et al. Chem. Rev., 113 (2013),pp. 1736-1850
    [87]
    J.H.Sinfelt, G.D.Meitzner Acc. Chem. Res., 26 (1993),pp. 1-6
    [88]
    B.S.Clausen, H.Topsøe, R.Frahm
    [89]
    J.W.Couves, J.M.Thomas, D.Waller, et al. Nature, 354 (1991),pp. 465-468
    [90]
    A.E.Russell, A.Rose Chem. Rev., 104 (2004),pp. 4613-4635
    [91]
    D.Bazin, L.Guczi Appl. Catal. A Gen., 213 (2001),pp. 147-162
    [92]
    H.-J.Lewerenz, M.F.Lichterman, M.H.Richter, et al. Electrochim. Acta, 211 (2016),pp. 711-719
    [93]
    M.Plaza, X.Huang, J.Y.Ko, et al. J. Am. Chem. Soc., 138 (2016),pp. 7816-7819
    [94]
    D.K.Bora, A.Braun, S.Erat, et al. J. Phys. Chem. C, 115 (2011),pp. 5619-5625
    [95]
    M.Yoshida, T.Yomogida, T.Mineo, et al. J. Phys. Chem. C, 118 (2014),pp. 24302-24309
    [96]
    M.Yoshida, T.Yomogida, T.Mineo, et al. Chem. Commun., 49 (2013),pp. 7848-7850
    [97]
    M.Yoshida, T.Mineo, Y.Mitsutomi, et al. Chem. Lett., 45 (2016),pp. 277-279
    [98]
    H.Kurosu, M.Yoshida, Y.Mitsutomi, et al. Electrochemistry, 84 (2016),pp. 779-783
    [99]
    M.F.Lichterman, S.Hu, M.H.Richter, et al. Energy Environ. Sci., 8 (2015),pp. 2409-2416
    [100]
    S.Kattel, B.Yan, Y.Yang, et al. J. Am. Chem. Soc., 138 (2016),pp. 12440-12450
    [101]
    K.Larmier, W.C.Liao, S.Tada, et al. Angew. Chem. Int. Ed., 129 (2017),pp. 2358-2363
    [102]
    S.Kattel, W.Yu, X.Yang, et al. Angew. Chem. Int. Ed., 55 (2016),pp. 7968-7973
    [103]
    G.M.Hamminga, G.Mul, J.A.Moulijn Chem. Eng. Sci., 59 (2004),pp. 5479-5485
    [104]
    I.V.Chernyshova Langmuir, 18 (2002),pp. 6962-6968
    [105]
    R.Nakamura, Y.Nakato J. Am. Chem. Soc., 126 (2004),pp. 1290-1298
    [106]
    O.Zandi, T.W.Hamann Nat. Chem., 8 (2016),pp. 778-783
    [107]
    B.Klahr, T.Hamann J. Phys. Chem. C, 118 (2014),pp. 10393-10399
    [108]
    D.V.Esposito, J.B.Baxter, J.John, et al. Energy Environ. Sci., 8 (2015),pp. 2863-2885
    [109]
    D.V.Esposito, I.Levin, T.P.Moffat, et al. Nat. Mater., 12 (2013),pp. 562-568
    [110]
    J.M.Velazquez, J.John, D.V.Esposito, et al. Energy Environ. Sci., 9 (2016),pp. 164-175
    [111]
    R.Graham, D.Yu Mod. Phys. Lett. B, 27 (2013),p. 1330018
    [112]
    B.H.Simpson, J.Rodriguez-Lopez J. Am. Chem. Soc., 137 (2015),pp. 14865-14868
    [113]
    B.Zhang, X.Zhang, X.Xiao, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 1606-1614
    [114]
    D.Zigah, J.Rodriguez-Lopez, A.J.Bard Phys. Chem. Chem. Phys., 14 (2012),pp. 12764-12772
    [115]
    J.n.Rodríguez-López, A.Minguzzi, A.J.Bard J. Phys. Chem. C, 114 (2010),pp. 18645-18655
    [116]
    E.Tsuji, K.-i.Fukui, A.Imanishi J. Phys. Chem. C, 118 (2014),pp. 5406-5413
    [117]
    T.Miki, H.Yanagi Langmuir, 14 (1998),pp. 3405-3410
    [118]
    N.J.Economou, S.Mubeen, S.K.Buratto, et al. Nano Lett., 14 (2014),pp. 3328-3334
    [119]
    E.Wierzbiński, M.Szklarczyk Thin Solid Films, 424 (2003),pp. 191-200
    [120]
    F.M.Toma, J.K.Cooper, V.Kunzelmann, et al. Nat. Commun., 7 (2016),p. 12012
    [121]
    M.Barroso, S.R.Pendlebury, A.J.Cowan, et al. Chem. Sci., 4 (2013),pp. 2724-2734
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (164) PDF downloads(29) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return