Bo Liu, Qipeng Chai, Weiwei Zhang, Wenjun Wu, He Tian, Wei-Hong Zhu. Cosensitization process effect of D-A-π-A featured dyes on photovoltaic performances. Green Energy&Environment, 2016, 1(1): 84-90. doi: 10.1016/j.gee.2016.04.003
Citation: Bo Liu, Qipeng Chai, Weiwei Zhang, Wenjun Wu, He Tian, Wei-Hong Zhu. Cosensitization process effect of D-A-π-A featured dyes on photovoltaic performances. Green Energy&Environment, 2016, 1(1): 84-90. doi: 10.1016/j.gee.2016.04.003

Cosensitization process effect of D-A-π-A featured dyes on photovoltaic performances

doi: 10.1016/j.gee.2016.04.003
  • Cosensitization based on two or multiple dyes as “dye cocktails” can hit the target on compensating and broadening light-harvesting region. Two indoline D-A-π-A motif sensitizers ( WS-2 and WS-39 ) that possess similar light response area but distinctly reversed feature in photovoltaic performance are selected as the specific cosensitization couple. That is, WS-2 shows quite high photocurrent but low photovoltage, and WS-39 gives relatively low photocurrent but quite high photovoltage. Due to the obvious “barrel effect”, both dyes show medium PCE around 8.50%. In contrast with the previous cosensitization strategy mostly focused on the compensation of light response region, herein we perform different cosensitization sequence, for taking insight into the balance of photocurrent and photovoltage, and achieving the synergistic improvement in power conversion efficiency (PCE). Electronic impedance spectra (EIS) indicate that exploiting dye WS-39 with high VOC value as the primary sensitizer can repress the charge recombination more effectively, resulting in superior VOC rather than using dye WS-2 with high JSC as the primary sensitizer. As a consequence, a high PCE value of 9.48% is obtained with the delicate cosensitization using WS-39 as primary dye and WS-2 as accessory dye, which is higher than the corresponding devices sensitized by each individual dye (around 8.48–8.67%). It provides an effective optimizing strategy of cosensitization how to combine the individual dye advantages for developing highly efficient solar cells.

     

  • loading
  • [1]
    B.O'Regan, M.Grätzel Nature, 353 (1991),pp. 737-740
    [2]
    A.Hagfeldt, G.Boschloo, L.Sun, et al. Chem. Rev., 110 (2010),pp. 6595-6663
    [3]
    P.Ganesan, A.Yella, T.W.Holcombe, et al. ACS Sustain. Chem. Eng., 3 (2015),pp. 2389-2396
    [4]
    Y.K.Eom, I.T.Choi, S.H.Kang, et al. Adv. Energy Mater., 5 (2015),p. 1500300
    [5]
    C.Chou, F.Hu, H.Yeh, et al. Angew. Chem. Int. Ed., 53 (2014),pp. 178-183
    [6]
    B.Xu, E.Sheibani, P.Liu, et al. Adv. Mater., 26 (2014),pp. 6629-6634
    [7]
    T.Higashino, Y.Fujimori, K.Sugiura, et al. Angew. Chem. Int. Ed., 127 (2015),pp. 9180-9184
    [8]
    X.Lu, T.Lan, Z.Qin, et al. ACS Appl. Mater. Interfaces, 6 (2014),pp. 19308-19317
    [9]
    L.Cabau, C.Vijay Kumar, A.Moncho, et al. Energy Environ. Sci., 8 (2015),pp. 1368-1375
    [10]
    K.Kakiage, Y.Aoyama, T.Yano, et al. Chem. Commun., 51 (2015),pp. 15894-15897
    [11]
    Q.Tao, Y.Xia, X.Xu, et al. Macromolecules, 48 (2015),pp. 1009-1016
    [12]
    W.Tan, R.Wang, M.Li, et al. Adv. Funct. Mater, 24 (2014),pp. 6540-6547
    [13]
    S.Kelkar, K.Pandey, S.Agarkar, et al. ACS Sustain. Chem. Eng., 2 (2014),pp. 2707-2714
    [14]
    K.Lim, C.Kim, J.Song, et al. J. Phys. Chem. C, 115 (2011),pp. 22640-22646
    [15]
    L.Yang, Z.Zheng, Y.Li, et al. Chem. Commun., 51 (2015),pp. 4842-4845
    [16]
    X.Kang, J.Zhang, D.O'Neil, et al. Chem. Mater., 26 (2014),pp. 4486-4493
    [17]
    Y.Z.Wu, W.H.Zhu, S.M.Zakeeruddin, et al. ACS Appl. Mater. Interfaces, 7 (2015),pp. 9307-9318
    [18]
    Y.Z.Wu, W.H.Zhu Chem. Soc. Rev., 42 (2013),pp. 2039-2058
    [19]
    A.Yella, C.-L.Mai, S.M.Zakeeruddin, et al. Angew. Chem. Int. Ed., 53 (2014),pp. 2973-2977
    [20]
    Q.P.Chai, W.Q.Li, J.C.Liu, et al. Sci. Rep., 5 (2015),p. 11330
    [21]
    R.Grisorio, L.De Marco, C.Baldisserri, et al. ACS Sustain. Chem. Eng., 3 (2015),pp. 770-777
    [22]
    S.Chaurasia, J.S.Ni, W.I.Hung, et al. ACS Appl. Mater. Interfaces, 7 (2015),pp. 22046-22057
    [23]
    P.P.Dai, L.Yang, M.Liang, et al. ACS Appl. Mater. Interfaces, 7 (2015),pp. 22436-22447
    [24]
    X.G.Li, Z.W.Zheng, W.Jiang, et al. Chem. Commun., 51 (2015),pp. 3590-3592
    [25]
    J.Shi, Z.F.Chai, R.L.Tang, et al. Sci. China Chem., 58 (2015),pp. 1144-1151
    [26]
    Y.Jiang, C.Cabanetos, M.Allain, et al. J. Mater. Chem. C, 3 (2015),pp. 5145-5151
    [27]
    Z.Y.Yao, M.Zhang, R.Z.Li, et al. Angew. Chem. Int. Ed., 54 (2015),pp. 5994-5998
    [28]
    M.K.Nazeeruddin, P.Péchy, T.Renouard, et al. J. Am. Chem. Soc., 123 (2001),pp. 1613-1624
    [29]
    C.J.Qin, A.Mirloup, N.Leclerc, et al. Adv. Energy Mater., 4 (2014),p. 1400085
    [30]
    S.W.Wang, C.C.Chou, F.C.Hu, et al. J. Mater. Chem. A, 2 (2014),pp. 17618-17627
    [31]
    Y.Hua, J.He, C.S.Zhang, et al. J. Mater. Chem. A, 3 (2015),pp. 3103-3112
    [32]
    T.Swetha, S.Niveditha, K.Bhanuprakash, et al. Electrochim. Acta, 153 (2015),pp. 343-351
    [33]
    J.J.Li, X.C.Yang, M.Cheng, et al. Dyes Pigment., 116 (2015),pp. 58-64
    [34]
    Y.Q.Wang, B.Chen, W.J.Wu, et al. Angew. Chem. Int. Ed., 53 (2014),pp. 10779-10783
    [35]
    K.Pei, Y.Z.Wu, H.Li, et al. ACS Appl. Mater. Interfaces, 7 (2015),pp. 5296-5304
    [36]
    M.Rudolph, T.Yoshida, H.Miura, et al. J. Phys. Chem. C, 119 (2015),pp. 1298-1311
    [37]
    K.Kakiage, Y.Aoyama, T.Yano, et al. Chem. Commun., 51 (2015),pp. 6315-6317
    [38]
    G.Li, M.Liang, H.Wang, et al. Chem. Mater., 25 (2013),pp. 1713-1722
    [39]
    A.Yella, H.-W.Lee, H.N.Tsao, et al. Science, 334 (2011),pp. 629-634
    [40]
    Y.C.Chang, C.L.Wang, T.Y.Pan, et al. Chem. Commun., 47 (2011),pp. 8910-8912
    [41]
    S.K.Das, B.Song, A.Mahler, et al. J. Phys. Chem. C, 118 (2014),pp. 3994-4006
    [42]
    S.Mathew, A.Yella, P.Gao, et al. Nat. Chem., 6 (2014),pp. 242-247
    [43]
    X.Sun, Y.Q.Wang, X.Li, et al. Chem. Commun., 50 (2014),pp. 15609-15612
    [44]
    C.L.Wang, J.Y.Hu, C.H.Wu, et al. Energy Environ. Sci., 7 (2014),pp. 1392-1396
    [45]
    W.H.Zhu, Y.Z.Wu, S.T.Wang, et al. Adv. Funct. Mater., 21 (2011),pp. 756-763
    [46]
    Q.P.Chai, W.Q.Li, Y.Z.Wu, et al. ACS Appl. Mater. Interfaces, 6 (2014),pp. 14621-14630
    [47]
    Y.S.Xie, Y.Y.Tang, W.J.Wu, et al. J. Am. Chem. Soc., 137 (2015),pp. 14055-14058
    [48]
    W.Q.Li, Y.Z.Wu, Q.Zhang, et al. ACS Appl. Mater. Interfaces, 4 (2012),pp. 1822-1830
    [49]
    N.Koide, A.Islam, Y.Chiba, et al. J. Photochem. Photobiol. A, 182 (2006),pp. 296-305
    [50]
    J.van de Lagemaat, N.G.Park, A.J.Frank J. Phys. Chem. B, 104 (2000),pp. 2044-2052
    [51]
    S.H.Fan, X.F.Lu, H.Sun, et al. Phys. Chem. Chem. Phys., 18 (2016),pp. 932-938
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (100) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return