Turn off MathJax
Article Contents
Ruiqi Du, Shiyan Wang, Yuhan Sun, Zemao Chen, Kaizheng Zhang, Binhang Yan, Zheng Liu, Yi Cheng. Unlocking Efficient Electrocatalytic Oxidation of Fatty Alcohol via Self-Promoted Hydrophobic Interfacial Microenvironment. Green Energy&Environment. doi: 10.1016/j.gee.2026.02.001
Citation: Ruiqi Du, Shiyan Wang, Yuhan Sun, Zemao Chen, Kaizheng Zhang, Binhang Yan, Zheng Liu, Yi Cheng. Unlocking Efficient Electrocatalytic Oxidation of Fatty Alcohol via Self-Promoted Hydrophobic Interfacial Microenvironment. Green Energy&Environment. doi: 10.1016/j.gee.2026.02.001

Unlocking Efficient Electrocatalytic Oxidation of Fatty Alcohol via Self-Promoted Hydrophobic Interfacial Microenvironment

doi: 10.1016/j.gee.2026.02.001
  • Electrocatalysis offers a promising solution for the oxidative valorization of fatty alcohols, showcasing reaction mildness and sustainability. However, the intrinsically low solubility of fatty alcohols in aqueous electrolyte presents severe mass transfer barriers, thus impeding the efficiency of electrocatalytic oxidation processes. In this study, we develop an electrolyte engineering strategy that avoids exogenous additives. By utilizing the amphiphilic fatty acid anions, we construct a “self-promoted” hydrophobic interfacial microenvironment. This design significantly enhances the oxidation rate of fatty alcohols on gold electrocatalysts while simultaneously ensuring high-purity products. Specifically, the addition of potassium octanoate (KC8) into 1 mol L-1 KOH results in a 3-4 fold increase in terms of current density and productivity for octanol oxidation, underscoring substantial practical potential. Mechanistic studies reveal that KC8 modifies the electrical double layer structure, effectively repelling interfacial water and disrupting the hydrogen bond network, thereby enhancing interfacial hydrophobicity. The hydrophobic microenvironment subsequently promotes the enrichment of octanol reactants at the interface, leading to improved adsorption coverage on the electrode. The “self-promoted” strategy established in this work represents a cost-effective method for interfacial microenvironment modulation, offering inspiration for the development of efficient organic electrocatalytic processes involving hydrophobic reactants.

     

  • loading
  • [1]
    G. Zhao, F. Yang, Z. Chen, Q. Liu, Y. Ji, Y. Zhang, Z. Niu, J. Mao, X. Bao, P. Hu, Y. Li, Nat Commun 8 (2017) 14039.
    [2]
    S.E. Davis, M.S. Ide, R.J. Davis, Green Chem. 15 (2012) 17-45.
    [3]
    S. Najafishirtari, K. Friedel Ortega, M. Douthwaite, S. Pattisson, G.J. Hutchings, C.J. Bondue, K. Tschulik, D. Waffel, B. Peng, M. Deitermann, G.W. Busser, M. Muhler, M. Behrens, Chemistry - A European Journal 27 (2021) 16809-16833.
    [4]
    L. Guo, X. Liu, Z. Zhao, R. Lin, Y. Meng, X. Ma, Y. Li, X. Mou, L. Yan, H. Zhu, Y. Ding, ACS Catal. 13 (2023) 12571-12581.
    [5]
    V.C. Corberan, M.E. Gonzalez-Perez, S. Martinez-Gonzalez, A. Gomez-Aviles, Applied Catalysis A: General 474 (2014) 211-223.
    [6]
    U. Biermann, U.T. Bornscheuer, I. Feussner, M.A.R. Meier, J.O. Metzger, Angewandte Chemie International Edition 60 (2021) 20144-20165.
    [7]
    G.-J. ten Brink, I.W.C.E. Arends, R.A. Sheldon, Science 287 (2000) 1636-1639.
    [8]
    A. Badalyan, S.S. Stahl, Nature 535 (2016) 406-410.
    [9]
    C.J. Mudugamuwa, Y. Xie, K. Zhang, T.P. Nicholls, J.M. Chalker, Z. Jia, Green Chem. 25 (2023) 3086-3094.
    [10]
    C. Tang, Y. Zheng, M. Jaroniec, S.-Z. Qiao, Angewandte Chemie International Edition 60 (2021) 19572-19590.
    [11]
    D. Zhou, C. Tian, H. Huang, W. Zhu, L. Luo, X. Sun, Nano Energy 128 (2024) 109884.
    [12]
    M.T. Bender, X. Yuan, K.-S. Choi, Nat Commun 11 (2020) 4594.
    [13]
    M.S. Ureta-Zanartu, C. Mascayano, C. Gutierrez, Electrochimica Acta 165 (2015) 232-238.
    [14]
    J. Li, C. Wu, Z. Wang, H. Meng, Q. Zhang, Y. Tang, A. Zou, Y. Zhang, H. Zhong, S. Xi, J. Xue, X. Wang, J. Wu, Angewandte Chemie International Edition 63 (2024) e202404730.
    [15]
    Y. Zhou, Z. Wang, W. Fang, R. Qi, Z. Wang, C. Xia, K. Lei, B. You, X. Yang, Y. Liu, W. Guo, Y. Su, S. Ding, B.Y. Xia, ACS Catal. 13 (2023) 2039-2046.
    [16]
    M. Du, Y. Zhang, S. Kang, C. Xu, Y. Ma, L. Cai, Y. Zhu, Y. Chai, B. Qiu, Small 19 (2023) 2303693.
    [17]
    H. Zhou, Y. Ren, Z. Li, M. Xu, Y. Wang, R. Ge, X. Kong, L. Zheng, H. Duan, Nat Commun 12 (2021) 4679.
    [18]
    X. Han, H. Sheng, C. Yu, T.W. Walker, G.W. Huber, J. Qiu, S. Jin, ACS Catal. 10 (2020) 6741-6752.
    [19]
    B. Huang, J. Yan, Z. Li, L. Chen, J. Shi, Angewandte Chemie International Edition n/a (n.d.) e202409419.
    [20]
    R. Du, Z. Chen, S. Wang, S. Zeng, R. Jia, K. Zhang, D. Lu, H. Wang, Y. Cheng, JACS Au 5 (2025) 1974-1982.
    [21]
    R. Du, R. Jia, B. Yuan, Z. Chen, K. Zhang, K. Nie, B. Yan, Y. Cheng, Journal of Energy Chemistry 110 (2025) 255-262.
    [22]
    Y. Liu, Z. Yang, Y. Zou, S. Wang, J. He, Small 20 (2024) 2306488.
    [23]
    R. Mathison, R. Atwi, H.B. McConnell, E. Ochoa, E. Rani, T. Akashige, J.A. Rohr, A.D. Taylor, C.E. Avalos, E.S. Aydil, N.N. Rajput, M.A. Modestino, J. Am. Chem. Soc. 147 (2025) 4296-4307.
    [24]
    M. Schreier, P. Kenis, F. Che, A.S. Hall, ACS Energy Lett. 8 (2023) 3935-3940.
    [25]
    W. Ge, Y. Chen, Y. Fan, Y. Zhu, H. Liu, L. Song, Z. Liu, C. Lian, H. Jiang, C. Li, J. Am. Chem. Soc. 144 (2022) 6613-6622.
    [26]
    W. Zhang, W. Ge, Y. Qi, X. Sheng, H. Jiang, C. Li, Angewandte Chemie International Edition 63 (2024) e202407121.
    [27]
    F. Dorchies, A. Serva, D. Crevel, J. De Freitas, N. Kostopoulos, M. Robert, O. Sel, M. Salanne, A. Grimaud, J. Am. Chem. Soc. 144 (2022) 22734-22746.
    [28]
    S.K. Nabil, M.A. Muzibur Raghuman, K. Kannimuthu, M. Rashid, H.S. Shiran, M.G. Kibria, M.A. Khan, Nat Catal (2024) 1-8.
    [29]
    Z. Li, Y. Yan, S.-M. Xu, H. Zhou, M. Xu, L. Ma, M. Shao, X. Kong, B. Wang, L. Zheng, H. Duan, Nat Commun 13 (2022) 147.
    [30]
    W. Zhang, T. Wang, C. Liu, C. Duan, W. Xiong, H. Li, Advanced Energy and Sustainability Research 4 (2023) 2300056.
    [31]
    G. Fu, X. Kang, Y. Zhang, Y. Guo, Z. Li, J. Liu, L. Wang, J. Zhang, X.-Z. Fu, J.-L. Luo, Nat Commun 14 (2023) 8395.
    [32]
    N. Uwitonze, D. Zhou, J. Lei, W. Chen, X.Q. Zuo, J. Cai, Y.-X. Chen, Electrochimica Acta 283 (2018) 1213-1222.
    [33]
    G. Zhao, J. Lin, M. Lu, L. Li, P. Xu, X. Liu, L. Chen, Nat Commun 15 (2024) 1-11.
    [34]
    P.A. Hernandez, M. Zhou, I. Vassilev, S. Freguia, Y. Zhang, J. Keller, P. Ledezma, B. Virdis, ACS Omega (2021).
    [35]
    A.I. Hanopolskyi, V.A. Smaliak, A.I. Novichkov, S.N. Semenov, ChemSystemsChem 3 (2021) e2000026.
    [36]
    D.R. Perinelli, M. Cespi, N. Lorusso, G.F. Palmieri, G. Bonacucina, P. Blasi, Langmuir 36 (2020) 5745-5753.
    [37]
    M. Jiang, J. Tan, Y. Chen, W. Zhang, P. Chen, Y. Tang, Q. Gao, Chem. Commun. 59 (2023) 3103-3106.
    [38]
    S. Cha, Y. Chen, W. Du, J. Wu, R. Wang, T. Jiang, X. Yang, C. Lian, H. Liu, M. Gong, JACS Au 4 (2024) 3629-3640.
    [39]
    J. Lin, X. Sheng, W. Ge, L. Dong, W. Zhang, X. Yang, J. Shen, H. Jiang, C. Li, AIChE Journal 70 (2024) e18599.
    [40]
    A. Filopoulou, S. Vlachou, S.C. Boyatzis, Molecules 26 (2021) 6005.
    [41]
    S. Sharifi Golru, A.S. May, E.J. Biddinger, ACS Catal. 13 (2023) 7831-7843.
    [42]
    Y. Zhao, J. Xu, K. Huang, W. Ge, Z. Liu, C. Lian, H. Liu, H. Jiang, C. Li, J. Am. Chem. Soc. 145 (2023) 6516-6525.
    [43]
    P. Yang, M. Douthwaite, J. Pan, L. Zheng, S. Hong, D.J. Morgan, M. Gao, D. Li, J. Feng, G.J. Hutchings, Catal. Sci. Technol. 11 (2021) 4898-4910.
    [44]
    P. Zhou, X. Lv, S. Tao, J. Wu, H. Wang, X. Wei, T. Wang, B. Zhou, Y. Lu, T. Frauenheim, X. Fu, S. Wang, Y. Zou, Advanced Materials 34 (2022) 2204089.
    [45]
    B. Yu, Y. Zhao, G. Li, R. Deng, R. Liu, L. Zhang, W. Wang, W. Liu, B. Qiao, CCS Chem (2024) 1-12.
    [46]
    A.M. Verma, L. Laverdure, M.M. Melander, K. Honkala, ACS Catal. 12 (2022) 662-675.
    [47]
    O. Gharbi, M.T.T. Tran, B. Tribollet, M. Turmine, V. Vivier, Electrochimica Acta 343 (2020) 136109.
    [48]
    B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Electrochimica Acta 55 (2010) 6218-6227.
    [49]
    S. Sharma, Molecular Dynamics Simulation of Nanocomposites Using BIOVIA Materials Studio, Lammps and Gromacs, Elsevier, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return