Turn off MathJax
Article Contents
Ruifeng Wang, Yuchang Liu, Yandong Li, Yafen Kong, Qizhi Chen, Shuangliang Zhao. Boosting efficient C-C Coupling toward Electrocatalytic Acetate Synthesis from CO2 via Close Cu+/Ag Dual Active Sites. Green Energy&Environment. doi: 10.1016/j.gee.2025.10.005
Citation: Ruifeng Wang, Yuchang Liu, Yandong Li, Yafen Kong, Qizhi Chen, Shuangliang Zhao. Boosting efficient C-C Coupling toward Electrocatalytic Acetate Synthesis from CO2 via Close Cu+/Ag Dual Active Sites. Green Energy&Environment. doi: 10.1016/j.gee.2025.10.005

Boosting efficient C-C Coupling toward Electrocatalytic Acetate Synthesis from CO2 via Close Cu+/Ag Dual Active Sites

doi: 10.1016/j.gee.2025.10.005
  • Efficiency of C-C bond coupling in highly inert CO2 is relatively low, which severely limits its efficient conversion to acetate. Here, we successfully developed a highly stable NF@CoMn2O4@Cu2O-Ag bimetallic active site catalyst by anchoring Ag on the Cu2O surface. In this catalyst, the Co3+/Mn3+-Mn4+ removes excess electrons from the Cu+ sites via strong electronic interactions, preventing the reduction of Cu2O to metallic Cu0, which ensures the NF@CoMn2O4@Cu2O-Ag exhibits a high resistance to deactivation. The Cu+ active sites of NF@CoMn2O4@Cu2O-Ag efficiently electroreduce CO2 to the *COatop intermediate, while the Ag active sites efficiently electroreduce CO2 to the *CObridge intermediate. The proximity of Cu+/Ag bimetallic sites shortens the distance for C-C bond coupling between the *COatop and *CObridge intermediates, facilitating the efficient electrocatalytic coupling of CO2 to synthesize acetate. DFT analysis indicates that the ΔG required for C-C bond coupling on the short-distance Cu+/Ag bimetallic sites of NF@CoMn2O4@Cu2O-Ag is significantly lower than that of NF@CoMn2O4@Cu2O, enabling a high Faradaic efficiency of 64.97% for acetate production at -0.3 V vs. RHE. This study provides an effective strategy for the rational design of synergistic catalysis between heterometallic catalytic sites to efficiently achieve C-C coupling for the synthesis of C2+ products.

     

  • loading
  • [1]
    R.W.R. Parker, J.L. Blanchard, C. Gardner, B. S. Green, K. Hartmann, P. H. Tyedmers, R. A. Watson, Nat. Clim. Change 8 (2018) 333-337.
    [2]
    J. Lan, Z. Wei, Y.-R. Lu, D. Chen, S. Zhao, T.-S. Chan, Y. Tan, Nat. Commun. 14 (2023) 2870.
    [3]
    C. Lv, L. Zhong, H. Liu, Z. Fang, C. Yan, M. Chen, Y. Kong, C. Lee, D. Liu, S. Li, J. Liu, L. Song, G. Chen, Q. Yan, G. Yu, Nat. Sustain. 4 (2021) 868-876.
    [4]
    Q. Zhu, C. L. Rooney, H. Shema, C. Zeng, J. A. Panetier, E. Gross, H. Wang, L. R. Baker, Nat. Catal. 7 (2024) 987-999.
    [5]
    R. Wang, Y. Liu, Y. Kong, P. Xie, S. Zhao, Chem. Eng. J. 469 (2023) 144049.
    [6]
    J. Chen, Z. Li, X. Wang, X. Sang, S. Zheng, S. Liu, B. Yang, Q. Zhang, L. Lei, L. Dai, Y. Hou, Angew. Chem. Int. Ed. 61 (2022) e202111683.
    [7]
    Y. Yuan, Z. Zheng, Y. Wang, K. Chang, W. Yan, Z. Song, Z. Xie, Z. Jiang, Q. Kuang, Appl. Catal. B: Environ. Energy 365 (2025) 124975.
    [8]
    P.-F. Sui, M.-R. Gao, S.B. Liu, C.Y. Xu, M.-N. Zhu, J.-L. Luo, Adv. Funct. Mater. 32 (2022) 2203794.
    [9]
    W. X. Ye, X. L. Guo, T. L. Ma, Chem. Eng. J. 414 (2021) 128825.
    [10]
    K. Ye, Z. Zhou, J. Shao, L. Lin, D. Gao, N. Ta, R. Si, G. Wang, X. Bao, Angew. Chem. Int. Ed. 59 (2020) 4814-4821.
    [11]
    Q. Zhu, D. Yang, H. Liu, X. Sun, C. Chen, J. Bi, J. Liu, H. Wu, B. Han, Angew. Chem. Int. Edit. 59 (2020) 8896-8901.
    [12]
    Q. Bie, H. Yin, Y. Wang, H. Su, Y. Peng, J. Li, Chinese J. Catal. 57 (2024) 96-104.
    [13]
    H.-L. Zhu, H.-Y. Chen, Y.-X. Han, Z.-H. Zhao, P.-Q. Liao, X.-M. Chen, J. Am. Chem. Soc. 144 (2022) 13319-13326.
    [14]
    Y. Jiao, Y. Zheng, P. Chen, M. Jaroniec, and S.-Z. Qiao, J. Am. Chem. Soc. 139 (2017) 18093-18100.
    [15]
    X. Su, Y. Sun, L. Jin, L. Zhang, Y. Yang, P. Kerns, B. Liu, S. Li, J. He, Appl. Catal. B-Environ. Energy 269 (2020) 118800.
    [16]
    P. Wang, H. Yang, C. Tang, Y. Wu, Y. Zheng, T. Cheng, K. Davey, X. Huang, S.-Z. Qiao, Nat. Commun. 13 (2022) 3754.
    [17]
    Q. Zhu, X. Sun, D. Yang, J. Ma, X. Kang, L. Zheng, J. Zhang, Z. Wu, B. Han, Nat. Commun. 10 (2019) 3851.
    [18]
    Y. Fu, Q. Xie, L. Wu, J. Luo, Chinese J. Catal. 43 (2022) 1066-1073.
    [19]
    D. Xiao, X. Bao, M. Zhang, Z. Li, Z. Wang, Y. Gao, Z. Zheng, P. Wang, H. Cheng, Y. Liu, Y. Dai, B. Huang, Chem. Eng. J. 452 (2023) 139358.
    [20]
    J.-J. Velasco-Velez, C.-H. Chuang, D. Gao, Q. Zhu, D. Ivanov, H. S. Jeon, R. Arrigo, R. V. Mom, E. Stotz, H.-L. Wu, T. E. Jones, B. R. Cuenya, A. Knop-Gericke, R. Schlogl, ACS Catal. 10 (2020) 11510-11518.
    [21]
    R. Wang, Y. Liu, Y. Kong, Q. Chen, S. Zhao, Chem. Eng. J. 499 (2024) 156065.
    [22]
    X. Wang, L. Shi, W. Ren, J. Li, Y. Liu, W. Fu, S. Wang, S. Yao, Y. Ji, K. Ji, L. Zhang, Z. Yang, J. Xie, Y.-M. Yan, J. Energy Chem. 99 (2024) 409-416.
    [23]
    B. Liu, X. Yao, Z. Zhang, C. Li, J. Zhang, P. Wang, J. Zhao, Y. Guo, J. Sun, C. Zhao, ACS Appl. Mater. Inter. 13 (2021) 39165-39177.
    [24]
    D. Tan, B. Wulan, J. Ma, X. Cao, J. Zhang, Nano Lett. 22 (2022) 6298-6305.
    [25]
    L. Yang, X. Lv, C. Peng, S. Kong, F. Huang, Y. Tang, L. Zhang, G. Zheng, ACS Cent. Sci. 9 (2023) 1905-1912.
    [26]
    Y. Wang, S. Xia, J. Zhang, Z. Li, R. Cai, C. Yu, Y. Zhang, J. Wu, Y. Wu, ACS Energy Lett. 8 (2023) 3373-3380.
    [27]
    R. Wang, Y. Liu, Y. Kong, Q. Chen, S. Zhao, ACS Catal. 15 (2025) 2703-2714.
    [28]
    B. Chen, D. Shi, R. Deng, X. Xu, W. Liu, Y. Wei, Z. Liu, S. Zhong, J. Huang, Y. Yu, ACS Catal. 14 (2024) 16224-16233.
    [29]
    F. Yu, M. Shu, G. Zhang, Q. Yu, H. Wang, Adv. Sci. 11 (2024) 2410118.
    [30]
    R. Purbia, S. Y. Choi, C. H. Woo, J. Jeon, C. Lim, D. K. Lee, J. Y. Choi, H.-S. Oh, J. M. Baik, Appl. Catal. B: Environ 345 (2024) 123694.
    [31]
    Z. Niu, S. Fan, X. Li, J. Duan, A. Chen, Appl. Catal. B: Environ. Energy 322 (2023) 122090.
    [32]
    R.-F. Wang, L.-G. Deng, K. Li, X.-J. Fan, W. Li, H.-Q. Lu, Ceram. Int. 46 (2020) 27484-27492.
    [33]
    J. Zhou, F. Pan, Q. Yao, Y. Zhu, H. Ma, J. Niu, J. Xie, Appl. Catal. B: Environ. 317 (2022) 121811.
    [34]
    N. Luo, F. Gao, H. Liu, T. Xiong, J. Wen, E. Duan, C. Wang, S. Zhao, H. Yi, X. Tang, Appl. Catal. B-Environ. Energy 343 (2024) 123442.
    [35]
    T. Xu, H. Yang, T. Lu, R. Zhong, J.-J. Lv, S. Zhu, M. Zhang, Z.-J. Wang, Y. Yuan, J. Li, J. Wang, H. Jin, S. Pan, X. Wang, T. Cheng, S. Wang, Nat. Commun. 16 (2025) 977.
    [36]
    F. Chang, J. Wei, Y. Liu, W. Wang, L. Yang, Z. Bai, Appl. Surf. Sci. 611 (2023) 155773.
    [37]
    R. Zhang, F. Chen, H. Jin, Y. Zhang, X. Hao, Y. Liu, T. Feng, X. Zhang, Z. Lu, W. Wang, F. Lu, H. Dong, H. Liu, H Liu, Y Cheng, Chem. Eng. J. 461 (2023) 142052.
    [38]
    H. Yuan, J. Li, W. Yang, Z. Zhuang, Y. Zhao, L. He, L. Xu, X. Liao, R. Zhu, L. Mai, ACS Appl. Mater. Inter. 10 (2018) 16410-16417.
    [39]
    N. Luo, F. Gao, H. Liu, T. Xiong, J. Wen, E. Duan, C. Wang, S. Zhao, H. Yi, X. Tang, Appl. Catal. B: Environ. Energy 343 (2024) 123442.
    [40]
    Z. Sun, Y. Zhai, G. Mei, W. Guo, Z. Fang, L. Jiao, Z. Zhu, X. Lu, J. Tang, Electrochim. Acta 470 (2023) 143328.
    [41]
    X. An, S. Li, A. Yoshida, T. Yu, Z. Wang, X. Hao, A. Abudula, G. Guan, ACS Appl. Mater. Inter. 45 (2019) 42114-42122.
    [42]
    L. Qiu, S. Shen, C. Ma, C. Lv, X. Guo, H. Jiang, Z. Liu, W. Qiao, L. Ling, J. Wang, Chem. Eng. J. 440 (2022) 135956.
    [43]
    J. Zhang, H. Zheng, S. Zhang, X. Zhang, J. Shao, S. Zhang, H. Yang, H. Chen, Energy 298 (2024) 131389.
    [44]
    J. Chen, J. Lu, R. Lang, C. Wang, S. Bao, Y. Li, K. Li, M. Fan, Green Energy Environ. (2025). https://doi.org/10.1016/j.gee.2025.01.006.
    [45]
    D. Zang, Q. Li, G. Dai, M. Zeng, Y. Huang, Y. Wei, Appl. Catal. B-Environ. Energy 281 (2021) 119426.
    [46]
    W. Luc, X. Fu, J. Shi, J.-J. Lv, M. Jouny, B. H. Ko, Y. Xu, Q. Tu, X. Hu, J. Wu, Q. Yue, Y. Liu, F. Jiao, Y. Kang, Nat. Catal. 2 (2019) 423-430.
    [47]
    Y. Wang, D.G. Wang, C.J. Dares, S.L. Marquard, M.V. Sheridan, T.J. Meyer, P. Natl. Acad. Sci. USA. 115 (2018) 278-283.
    [48]
    G. Bai, M. Wang, L. Peng, L. Li, Y. Yu, W. Li, N. Yang, D. Kolokolove, J. Qiao, Green Energy Environ. (2025). https://doi.org/10.1016/j.gee.2025.04.010.
    [49]
    Y. Shi, K. Sun, J. Shan, H. Li, J. Gao, Z. Chen, C. Sun, Y. Shuai, Z. Wang, ACS Catal. 12 (2022) 8252-8258.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (12) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return