Turn off MathJax
Article Contents
Huizhong Wu, Ruiheng Liang, Yujie Chen, Xiuwu Zhang, Jingyang Liu, Zehua Xia, Ignasi Sirés, Minghua Zhou. Peroxymonosulfate activation on the S-scheme heterojunction Bi4O5I2/TiO2 photoanode of a photocatalytic fuel cell for degradation of tetracyclines with green power generation. Green Energy&Environment. doi: 10.1016/j.gee.2025.10.002
Citation: Huizhong Wu, Ruiheng Liang, Yujie Chen, Xiuwu Zhang, Jingyang Liu, Zehua Xia, Ignasi Sirés, Minghua Zhou. Peroxymonosulfate activation on the S-scheme heterojunction Bi4O5I2/TiO2 photoanode of a photocatalytic fuel cell for degradation of tetracyclines with green power generation. Green Energy&Environment. doi: 10.1016/j.gee.2025.10.002

Peroxymonosulfate activation on the S-scheme heterojunction Bi4O5I2/TiO2 photoanode of a photocatalytic fuel cell for degradation of tetracyclines with green power generation

doi: 10.1016/j.gee.2025.10.002
  • Photocatalytic fuel cells (PFC) are green devices for simultaneous contaminant degradation and power generation. However, their performance is still limited due to the inefficient light capture and poor charge transfer at photoanodes. Here, a PFC has been successfully developed using a Bi4O5I2/TiO2 nanotube arrays (NTAs) S-scheme heterojunction as the photoanode, incorporating peroxymonosulfate (PMS) as synergistic precursor of reactive oxygen species (ROS). A 17-fold increase in rate constant for the degradation of tetracycline (TC) and 6.6-fold increase in maximum power generation was attained in comparison with the TiO2/light PFC system. A systematic analysis elucidating PMS-mediated regulation of ROS generation and electron transfer was performed. The photocatalytic mechanism, dominated by non-radical 1O2 and photogenerated holes (h+), led to a maximum photocurrent density (0.091 mA cm-2) and output power (0.99 mW cm-2). The current work demonstrates the great robustness of heterojunction-based PFC as new self-powered water decontamination systems.

     

  • loading
  • [1]
    H. Gu, W. Xie, A. Du, D. Pan, Z. Guo, Catal. Rev. 65 (2023) 569-619.
    [2]
    K. Changanaqui, E. Brillas, P.L. Cabot, H. Alarcon, I. Sires, Chemosphere 352 (2024) 141396.
    [3]
    J. Sun, H. Wu, C. Fu, C. Zhang, Z. Hu, M. Zhou, Appl. Catal. B: Environ. Energy 351 (2024) 123976.
    [4]
    B. Li, F. Tong, M. Lv, Z. Wang, Y. Liu, P. Wang, H. Cheng, Y. Dai, Z. Zheng, B. Huang, ACS Catal. 12 (2022) 9114-9124.
    [5]
    Q. Pan, H. Zhang, Q. Liu, D. Huang, D.-P. Yang, T. Jiang, S. Sun, X. Chen, Chin. Chem. Lett. 36 (2025) 110169.
    [6]
    Z. Zhao, G. Zhang, Y. Zhang, M. Dou, Y. Li, Water Res. 185 (2020) 116225.
    [7]
    C. Grandclement, I. Seyssiecq, A. Piram, P. Wong-Wah-Chung, G. Vanot, N. Tiliacos, N. Roche, P. Doumenq, Water Res. 111 (2017) 297-317.
    [8]
    L. Lu, J.S. Guest, C.A. Peters, X. Zhu, G.H. Rau, Z.J. Ren, Nature Sustain. 1 (2018) 750-758.
    [9]
    F. Alcaide, I. Sires, E. Brillas, P.L. Cabot, Curr. Opinion Electrochem. 45 (2024) 101530.
    [10]
    J.L. Sun, C.H. Fu, Z.Z. Hu, I. Sires, M.H. Zhou, Crit. Rev. Environ. Sci. Technol. 55 (2025): 783-804.
    [11]
    D. Pan, S. Xiao, X. Chen, R. Li, Y. Cao, D. Zhang, S. Pu, Z. Li, G. Li, H. Li, Environ. Sci. Technol. 53 (2019) 3697-3706.
    [12]
    S.-L. Lee, L.-N. Ho, S.-A. Ong, Y.-S. Wong, C.-H. Voon, W.F. Khalik, N.A. Yusoff, N. Nordin, Chemosphere 209 (2018) 935-943.
    [13]
    Y.-P. Ong, L.-N. Ho, S.-A. Ong, J. Banjuraizah, A.H. Ibrahim, S.-H. Thor, K.-L. Yap, Chemosphere 263 (2021) 128212.
    [14]
    L. Lin, T. Liu, Y. Qie, W. Liu, Y. Meng, Q. Yuan, F. Luan, Environ. Sci. Technol. 56 (2022) 13327-13337.
    [15]
    P. Garcia-Ramirez, C.A. Pineda-Arellano, D.E. Millan-Ocampo, A. Alvarez-Gallegos, I. Sires, S. Silva-Martinez, Electrochim. Acta 476 (2024) 143710.
    [16]
    X. Li, Z. Zhuang, W. Li, H. Pan, Appl. Catal. A: Gen. 429 (2012) 31-38.
    [17]
    L. Jing, Y. Qu, H. Su, C. Yao, H. Fu, J. Phys. Chem. C 115 (2011) 12375-12380.
    [18]
    J. Wang, L. Jing, L. Xue, Y. Qu, H. Fu, J. Hazard. Mater. 160 (2008) 208-212.
    [19]
    S.-m. Chang, W.-s. Liu, Appl. Catal. B: Environ. 156 (2014) 466-475.
    [20]
    X. Ren, M. Gao, Y. Zhang, Z. Zhang, X. Cao, B. Wang, X. Wang, Appl. Catal. B: Environ. 274 (2020) 119063.
    [21]
    M. Arumugam, M.Y. Choi, J. Ind. Eng. Chem. 81 (2020) 237-268.
    [22]
    M. Ji, J. Di, Y. Liu, R. Chen, K. Li, Z. Chen, J. Xia, H. Li, Appl. Catal. B: Environ. 268 (2020) 118403.
    [23]
    R. Guo, Y. Wang, J. Li, X. Cheng, D.D. Dionysiou, Appl. Catal. B: Environ. 278 (2020) 119297.
    [24]
    Y. Hu, Z. Li, J. Yang, H. Zhu, Chem. Eng. J. 360 (2019) 200-211.
    [25]
    J. Jing, X. Wang, M. Zhou, Water Res. 232 (2023) 119682.
    [26]
    S. Li, W. Wang, H. Wu, X. Zhang, R. Liang, X. Zhang, G. Song, J. Jing, S. Li, M. Zhou, Proc. Natl. Acad. Sci. 121 (2024) e2404965121.
    [27]
    X. Chen, W. Wang, H. Xiao, C. Hong, F. Zhu, Y. Yao, Z. Xue, Chem. Eng. J. 193 (2012) 290-295.
    [28]
    G. Fang, W. Wu, C. Liu, D.D. Dionysiou, Y. Deng, D. Zhou, Appl. Catal. B: Environ. 202 (2017) 1-11.
    [29]
    S. Yan, Y. Shi, Y. Tao, H. Zhang, Chem. Eng. J. 359 (2019) 933-943.
    [30]
    Y. Zhang, L. Liu, Q. Chen, Y. He, M.K. Leung, Chem. Eng. J. 378 (2019) 122148.
    [31]
    J. Zhou, C. Hou, L. Liu, J. Taiwan Inst. Chem. Eng. 101 (2019) 31-40.
    [32]
    R. Liu, W.-D. Yang, L.-S. Qiang, J.-F. Wu, Thin Sol. Films 519 (2011) 6459-6466.
    [33]
    C. Zhou, C. Lai, P. Xu, G. Zeng, D. Huang, C. Zhang, M. Cheng, L. Hu, J. Wan, Y. Liu, ACS Sustain. Chem. Eng. 6 (2018) 4174-4184.
    [34]
    E.-T. Yun, J.H. Lee, J. Kim, H.-D. Park, J. Lee, Environ. Sci. Technol. 52 (2018) 7032-7042.
    [35]
    Z. Yin, M. Han, Z. Hu, L. Feng, Y. Liu, Z. Du, L. Zhang, Chem. Eng. J. 390 (2020) 124532.
    [36]
    G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6 (1996) 15-50.
    [37]
    G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169.
    [38]
    M. Zhao, C. Tan, M. Liu, Y. Wang, H. Ren, X. Yu, Z. Zhang, W. Wang, C. Li, Appl. Organomet. Chem. 38 (2024) e7687.
    [39]
    J.-Y. Zhang, J. Ding, L.-M. Liu, R. Wu, L. Ding, J.-Q. Jiang, J.-W. Pang, Y. Li, N.-Q. Ren, S.-S. Yang, Environ. Sci. Ecotechnol. 17 (2024) 100308.
    [40]
    H. Wu, Z. Hu, R. Liang, X. Zhang, M. Zhou, O.A. Arotiba, J. Hazard. Mater. 456 (2023) 131696.
    [41]
    H. Li, H. Shang, X. Cao, Z. Yang, Z. Ai, L. Zhang, Environ. Sci. Technol. 52 (2018) 8659-8665.
    [42]
    S. Sun, H. Ding, L. Mei, Y. Chen, Q. Hao, W. Chen, Z. Xu, D. Chen, Chin. Chem. Lett. 31 (2020) 2287-2294.
    [43]
    H. Wu, R. Liang, G. Song, Z. Hu, X. Zhang, M. Zhou, Chin. Chem. Lett. 35 (2024) 109131.
    [44]
    M. Kim, J. Kim, H.-i. Cho, E.-T. Yun, J. Choi, M. Kim, H. Lee, M. Cho, H.-i. Kim, J. Lee, ACS ES&T Eng. 1 (2021) 1530-1541.
    [45]
    X. Chen, J. Yao, H. Dong, M. Hong, N. Gao, Z. Zhang, W. Jiang, Water Res. 207 (2021) 117800.
    [46]
    C. Cai, J. Liu, Z. Zhang, Y. Zheng, H. Zhang, Sep. Purif. Technol. 165 (2016) 42-52.
    [47]
    Y. Zhou, Y. Gao, J. Jiang, Y.-M. Shen, S.-Y. Pang, Z. Wang, J. Duan, Q. Guo, C. Guan, J. Ma, Chem. Eng. J. 379 (2020) 122378.
    [48]
    S. Nasseri, A.H. Mahvi, M. Seyedsalehi, K. Yaghmaeian, R. Nabizadeh, M. Alimohammadi, G.H. Safari, J. Mol. Liquid. 241 (2017) 704-714.
    [49]
    J. Zhang, X. Zhao, Y. Wang, Y. Gong, D. Cao, M. Qiao, Appl. Catal. B: Environm. 237 (2018) 976-985.
    [50]
    Z.-J. Xiao, X.-C. Feng, H.-T. Shi, B.-Q. Zhou, W.-Q. Wang, N.-Q. Ren, J. Hazard. Mater. 424 (2022) 127247.
    [51]
    Z.-C. Gao, Y.-L. Lin, B. Xu, Y. Xia, C.-Y. Hu, T.-Y. Zhang, T.-C. Cao, W.-H. Chu, N.-Y. Gao, Water Res. 154 (2019) 199-209.
    [52]
    M. Golshan, B. Kakavandi, M. Ahmadi, M. Azizi, J. Hazard. Mater. 359 (2018) 325-337.
    [53]
    M. Kohantorabi, G. Moussavi, S. Mohammadi, P. Oulego, S. Giannakis, Chemosphere 277 (2021) 130271.
    [54]
    M. Li, J. Sun, D. Han, B. Wei, Q. Mei, Z. An, X. Wang, H. Cao, J. Xie, M. He, Ecotoxicol. Environm. Safe. 204 (2020) 110977.
    [55]
    D. Guo, Y. Wang, C. Chen, J. He, M. Zhu, J. Chen, C. Zhang, Chem. Eng. J. 422 (2021) 130035.
    [56]
    P. Duan, X. Liu, B. Liu, M. Akram, Y. Li, J. Pan, Q. Yue, B. Gao, X. Xu, Appl. Catal. B: Environ. 298 (2021) 120532.
    [57]
    M. Jia, Z. Yang, H. Xu, P. Song, W. Xiong, J. Cao, Y. Zhang, Y. Xiang, J. Hu, C. Zhou, Chem. Eng. J. 388 (2020) 124388.
    [58]
    J. Deng, P. Ren, D. Deng, L. Yu, F. Yang, X. Bao, Energy Environ. Sci. 7 (2014) 1919-1923.
    [59]
    D. Gu, C. Guo, S. Hou, J. Lv, Y. Zhang, Q. Feng, Y. Zhang, J. Xu, Chem. Eng. J. 370 (2019) 19-26.
    [60]
    W. Chen, Z. Meng, K. Huang, R. Huang, H. Wang, X. Liu, Q. He, R. Chen, Q. Chen, W. Wang, Colloid. Surface. A 719 (2025) 137074.
    [61]
    Z. Wu, Z. Tong, Y. Xie, H. Sun, X. Gong, P. Qin, Y. Liang, X. Yuan, D. Zou, L. Jiang, Chem. Eng. J. 434 (2022) 134732.
    [62]
    J. Xu, Z. Wang, Y. Zhu, J. Mater. Sci. Technol. 49 (2020) 133-143.
    [63]
    L. Xu, Y. Sun, L. Du, J. Zhang, Desalination 352 (2014) 58-65.
    [64]
    H. Shi, H. Wang, J. Liu, X. Qu, H. Gao, J. Li, H. Zhu, W. Wang, Z. Chen, Mat. Sci. Semicon. Proc. 166 (2023) 107728.
    [65]
    X. Zhou, H. Shi, A. Rong, M. Wei, C. Chen, Z. Chen, Appl. Surf. Sci. 694 (2025) 162844.
    [66]
    Y. Jin, J. Deng, J. Yu, C. Yang, M. Tong, Y. Hou, J. Mater. Chem. B 3 (2015) 3993-4000.
    [67]
    Y. Hu, K. Chen, Y.-L. Li, J.-Y. He, K.-S. Zhang, T. Liu, W. Xu, X.-J. Huang, L.-T. Kong, J.-H. Liu, Nanoscale 11 (2019) 1047-1057.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (12) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return