Turn off MathJax
Article Contents
Ziming Chen, Yuyan Gao, Zhihao Guo, Yan Du, Zhengyan Qu, Jiuxuan Zhang, Zhenchen Tang, Hong Jiang, Rizhi Chen. Integrated reaction–separation in a pilot-scale catalytic membrane reactor for efficient continuous p-nitrophenol hydrogenation. Green Energy&Environment. doi: 10.1016/j.gee.2025.10.001
Citation: Ziming Chen, Yuyan Gao, Zhihao Guo, Yan Du, Zhengyan Qu, Jiuxuan Zhang, Zhenchen Tang, Hong Jiang, Rizhi Chen. Integrated reaction–separation in a pilot-scale catalytic membrane reactor for efficient continuous p-nitrophenol hydrogenation. Green Energy&Environment. doi: 10.1016/j.gee.2025.10.001

Integrated reaction–separation in a pilot-scale catalytic membrane reactor for efficient continuous p-nitrophenol hydrogenation

doi: 10.1016/j.gee.2025.10.001
  • Hydrogenation reactions, vital in chemical engineering, are hampered by limitations including catalyst recovery, mass transfer issues, and scalability. Catalytic membrane reactors offer a promising alternative by integrating reaction and separation, boosting efficiency and simplifying catalyst handling. However, scaling these membranes to industrial levels while ensuring long-term stability and high efficiency remains a significant challenge. This study tackles this by developing and demonstrating a pilot-scale multi-channel ceramic catalytic membrane reactor system. This system, featuring three 19-channel ceramic catalytic membranes, achieved nearly 100% p-nitrophenol hydrogenation conversion consistently over 600 h of continuous liquid-phase operation. This underscores the multi-channel ceramic catalytic membrane superior catalytic efficiency, remarkable long-term stability, and strong scalability. This work establishes a robust platform for continuous-flow hydrogenation, providing a solid foundation for practical catalytic membrane reactors technology application in the chemical industry.

     

  • loading
  • [1]
    S.J. Yu, X.X. Yang, Q.H. Li, Y.G. Zhang, H. Zhou, Green Energy Environ. 8 (2023) 1216-1227.
    [2]
    C. Dong, Q. Yu, R.P. Ye, P.P. Su, J. Liu, G.H. W, Angew. Chem. Int. Edit. 59 (2020) 18374-18379.
    [3]
    X.M. Ren, J.Y. Huang, J. Ma, Y.M. Zhang, W. Chu, S. Perathoner, G. Centi, Y.F. Liu, Nat. Commun. 16 (2025) 4851.
    [4]
    W.T. Huo, C.L. Zhang, H.J. Yuan, M.J. Jia, C.L. Ning, Y. Tang, Y. Zhang, J.H. Luo, Z.L. Wang, J. Ind. Eng. Chem. 20 (2014) 4140-4145.
    [5]
    J.K. Tan, Z.B. Gu, Z.K. Liu, P. W, R. Meijboom, G.R. Zhang, W.Q. Jin, Green Energy Environ. 9 (2024) 1771-1780.
    [6]
    Y.X. He, N. Cheshomi, S.M. Lawson, A.K. Itta, F. Rezaei, S. Kapila, A.A. Rownaghi, Chem. Eng. J. 410 (2021) 128326.
    [7]
    R. Marks, J. Seaman, J. Kim, K. Doudrick, Water Res. 174 (2020) 115593.
    [8]
    L.P. Gu, X. Tang, Y. Sun, H.J. Kou, Ecotox. Environ. Safe. 196 (2020) 110547.
    [9]
    F.Y. Tian, B.Q. Xu, Y.J. Li, J. Deng, H.L. Zhang, R.C. Peng, ChemistrySelect 5 (2020) 1676-1682.
    [10]
    H. Jiang, Y.F. Liu, W.H. Xing, R.Z. Chen, Ind. Eng. Chem. Res. 60 (2021) 8969-8990.
    [11]
    Z.H. Guo, Y. Du, J.X. Zhang, Z.C. Tang, H. Jiang, R.Z. Chen, Chem. Eng. Sci. 287 (2024) 119710.
    [12]
    G.D. Shao, Y. Du, J.X. Zhang, Z.C. Tang, H. Jiang, R.Z. Chen, Sep. Purif. Technol. 338 (2024) 126590.
    [13]
    J.X. Zhang, B. Liu, L.L. Cai, Y.H. Li, Y. Zhang, M.K. Liu, L.J. Jia, S.Q. Fan, L.F. Lei, M.H. Zhu, X.F. Zhu, X.B. Ke, A.S. Huang, H.Q. Jiang, R.Z. Chen, Adv. Membr. 3 (2023) 100070.
    [14]
    Q. Zeng, Y. Du, Z.Y. Qu, J.X. Zhang, Z.C. Tang, H. Jiang, R.Z. Chen, J. Membr. Sci. 733 (2025) 124301.
    [15]
    L. Cao, X.H. Zhou, Z.H. Li, K.M. Su, B.W. Cheng, J. Power Sources 413 (2019) 376-383.
    [16]
    M. Ciprian, K.H. Ruiz, M. Kassymova, T.T. Wang, S. Zhuiykov, S. Chaemchuen, R. Tu, F. Verpoort, Micropor. Mesopor. Mat. 285 (2019) 80-88.
    [17]
    Y.J. Huang, Y.S. Chen, S.Y. Xi, X.W. Hu, M.H. Tsai, New J. Chem. 47 (2023) 18701.
    [18]
    S. Naga, Y. Ohta, H. Koike, Anal Sci. 10 (1994) 429-431.
    [19]
    L. Yu, M.A. Matthews, Int. J. Hydrogen Energ. 36 (2011) 7416-7422.
    [20]
    Q.Y. Zhao, Q. Zhang, M.X. Fu, Y.X. Liu, Y.N. Sun, H.J. Lu, X.Y. Fu, Y.F. Zhang, H. Wang, Electrochim. Acta 289 (2018) 139-148.
    [21]
    S. Soma, M. Ishigaki, S. Abe, Y. Sibamoto, Nucl. Eng. Technol. 56 (2024) 2524-2533.
    [22]
    L.L. Chen, D.D. Liu, Y. Du, Z.Y. Qu, J.X. Zhang, Z.C. Tang, H. Jiang, R.Z. Chen, Sep. Purif. Technol. 364 (2025) 132345.
    [23]
    M. Rajesh, P.M. Doan, N. Ange, Ind. Eng. Chem. Res. 57 (2018) 16137-16161.
    [24]
    V.D. Tom W, N. Jelle J, K. Nynke A, Z. Jovana, D.J. Krijn P, ACS Catal. 8 (2018) 10581-10589.
    [25]
    Z.H. Guo, Z.M. Chen, J.X. Zhang, Z.C. Tang, H. Jiang, R.Z. Chen, Ind. Eng. Chem. Res. 63 (2024) 12715.
    [26]
    Y. Chen, S.C. Wu, J.J. Han, X. Yan, X.J. Guo, W.Z. Lang, J. Membr. Sci. 687 (2023) 122098.
    [27]
    Z.H. Guo, J.W. Yang, Y. Du, J.X. Zhang, Z.Y. Qu, Z.C. Tang, H. Jiang, R.Z. Chen, Chem. Eng. Sci. 317 (2025) 122054.
    [28]
    H.L. Hong, K.L. Yu, H.B. Liu, R.F. Zhou, W.H. Xing, Industrial-scale 61-channel monolithic silicalite-1 membranes for butane isomer separation. Adv. Membr. 4 (2024) 100096.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (14) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return