Turn off MathJax
Article Contents
Shiying Ni, Yuqi Song, Dong Zou, Zhaoxiang Zhong, Weihong Xing. Efficient construction of SiC membranes to filtrate high-temperature dust-laden gas for environmental sustainability. Green Energy&Environment. doi: 10.1016/j.gee.2025.08.003
Citation: Shiying Ni, Yuqi Song, Dong Zou, Zhaoxiang Zhong, Weihong Xing. Efficient construction of SiC membranes to filtrate high-temperature dust-laden gas for environmental sustainability. Green Energy&Environment. doi: 10.1016/j.gee.2025.08.003

Efficient construction of SiC membranes to filtrate high-temperature dust-laden gas for environmental sustainability

doi: 10.1016/j.gee.2025.08.003
  • During the production processes of energy, metallurgy, chemical engineering, and other process industries, substantial high-temperature dust-laden flue gas is generated. Asymmetric silicon carbide (SiC) membranes exhibit significant potential in flue gas filtration since they enable direct filtration of high-temperature gas and facilitate thermal energy recovery. However, membrane particle penetration is a prevalent issue when constructing membrane layer directly on macroporous support, which contributes to a considerable mass transfer resistance. Herein, a novel hydrophobic modification strategy was developed to avoid the slurry penetration, thereby fabricating the asymmetric SiC membrane without the necessity of any intermediate or sacrificial layer. Firstly, the modifier concentration was adjusted to guarantee that the support was hydrophobic enough to prevent the slurry from penetrating. Subsequently, the slurry surface tension was fine-tuned by introducing ethanol to enhance the integrity of the SiC membrane. Furthermore, the effect of solid content was systematically investigated. It was demonstrated that the optimized SiC membranes obtained excellent gas permeance from 100.8 to 199.8 m3·m−2·h−1·kPa−1 with the pore size ranging from 1.93 to 3.89 μm. Also, the SiC membrane exhibited excellent stability for 24 h and achieved an excellent dust removal efficiency (99.99%) when filtering ultrafine dust particles (∼300 nm) under high temperatures. This method effectively bridges the membrane particle penetration issue caused by the particle size disparity among different layers of the asymmetric membrane, establishing an efficient strategy to fabricate high-permeance SiC membranes applied in high-temperature dust-laden gas filtration.

     

  • loading
  • [1]
    H. Yang, J. Liu, K. Jiang, J. Meng, D. Guan, Y. Xu, S. Tao, J. Cleaner Prod. 185 (2018) 331-341.
    [2]
    P.-T. Cai, T. Chen, B. Chen, Y.-C. Wang, Z.-Y. Ma, J.-H. Yan, Fuel 352 (2023) 129027.
    [3]
    M.A. Ali, Z. Huang, M. Bilal, M.E. Assiri, A. Mhawish, J.E. Nichol, G. de Leeuw, M. Almazroui, Y. Wang, Y. Alsubhi, Sci. Total Environ. 893 (2023) 164871.
    [4]
    M. Yang, Y.-M. Guo, M.S. Bloom, S.C. Dharmagee, L. Morawska, J. Heinrich, B. Jalaludin, I. Markevychd, L.D. Knibbsf, S. Lin, S. Hung Lan, P. Jalava, M. Komppula, M. Roponen, M.-R. Hirvonen, Q.-H. Guan, Z.-M. Liang, H.-Y. Yu, L.-W. Hu, B.-Y. Yang, X.-W. Zeng, G.-H. Dong, Environ. Int. 145 (2020) 106092.
    [5]
    E. Chaudhary, F. George, A. Saji, S. Dey, S. Ghosh, T. Thomas, A.V. Kurpad, S. Sharma, N. Singh, S. Agarwal, U. Mehta, Nat. Commun. 14 (2023) 6955.
    [6]
    X. Ji, J. Huang, L. Teng, S. Li, X. Li, W. Cai, Z. Chen, Y. Lai, Green Energy Environ. 8 (2023) 673-697.
    [7]
    X. Wang, Powder Technol. 366 (2020) 36-42.
    [8]
    X. Liu, H. Shen, X. Nie, Int. J. Environ. Res. Public Health 16 (2019) 247.
    [9]
    M.T. Kanojiya, N. Mandavgade, V. Kalbande, C. Padole, Mater. Today: Proc. (2021) 378-382.
    [10]
    L. Margarita Valencia-Osorio, A. Felipe Zapata-Gonzalez, J. David Ojeda-Galeano, M. Lopes Aguiar, M. Lucia Alvarez-Lainez, Sep. Purif. Technol. 328 (2024) 125030.
    [11]
    S.-Z. Tang, Y.-L. He, F.-L. Wang, Q.-X. Zhao, Y. Yu, Fuel 296 (2021) 120532.
    [12]
    N. Mohammadaliha, M. Amani, M. Bahrami, Appl. Therm. Eng. 215 (2022) 118976.
    [13]
    J. Li, Q. Gu, H. Zhang, Z. Zhong, Y. Fan, W. Xing, Adv. Membr. 5 (2025) 100148.
    [14]
    Q. Li, B. Lin, W. Wei, Z. Zhong, W. Xing, Adv. Membr. 5 (2025) 100147.
    [15]
    G. Zhou, Q. Gu, H. Sun, K. Zhou, S. Yu, K. Zhou, F. Han, W. Peng, Z. Zhong, W. Xing, J. Eur. Ceram. Soc. 44 (2024) 1959-1971.
    [16]
    X. Chen, Q. Cao, T. Chen, D. Wang, Y. Fan, W. Xing, Adv. Membr. 3 (2023) 100068.
    [17]
    D. Zou, Z. Meng, E. Drioli, X. Da, X. Chen, M. Qiu, Y. Fan, Ind. Eng. Chem. Res. 59 (2020) 4721-4731.
    [18]
    W. Zhu, Y. Liu, K. Guan, C. Peng, J. Wu, Ceram. Int. 47 (2021) 12357-12365.
    [19]
    T. Chen, P. Xu, X. Chen, T. Wang, K. Fu, M. Qiu, Y. Fan, Sep. Purif. Technol. 304 (2023) 122331.
    [20]
    T. Chen, W. Fan, P. Xu, X. Chen, M. Qiu, Y. Fan, J. Eur. Ceram. Soc. 44 (2024) 116765.
    [21]
    B. Elyassi, M. Sahimi, T.T. Tsotsis, J. Membr. Sci. 316 (2008) 73-79.
    [22]
    Y.H. Cho, S. Jeong, S.-J. Kim, Y. Kim, H.J. Lee, T.H. Lee, H.B. Park, H. Park, S.-E. Nam, Y.-I. Park, J. Membr. Sci. 618 (2021) 118442.
    [23]
    H. Qiao, S. Feng, Z.-x. Low, J. Chen, F. Zhang, Z. Zhong, W. Xing, J. Membr. Sci. 594 (2020) 117464.
    [24]
    W. Qin, C. Peng, J. Wu, Ceram. Int. 43 (2017) 901-904.
    [25]
    Y. Chi, J.Y. Chong, B. Wang, K. Li, J. Membr. Sci. 595 (2020) 117479.
    [26]
    Y. Song, S. Ni, J. Liu, D. Zou, Z. Zhong, W. Xing, J. Membr. Sci. 722 (2025) 123917.
    [27]
    S. Ni, D. Zou, Z. Zhong, W. Xing, J. Membr. Sci. 695 (2024) 122496.
    [28]
    S. Dhar, O. Seitz, M.D. Halls, S. Choi, Y.J. Chabal, L.C. Feldman, J. Am. Chem. Soc. 131 (2009) 16808-16813.
    [29]
    Y. Wang, Q. Jiang, W. Jing, Z. Zhong, W. Xing, J. Membr. Sci. 648 (2022) 120347.
    [30]
    D. Zou, J. Xu, X. Chen, E. Drioli, M. Qiu, Y. Fan, Sep. Purif. Technol. 219 (2019) 127-136.
    [31]
    K. Miao, H. Li, B. Xu, S. Liu, D. Zou, K. Guan, X. Wu, H. Matsuyama, Desalination 602 (2025) 118634.
    [32]
    K. Miao, Y. Song, K. Guan, J. Liu, H. Matsuyama, D. Zou, Z. Zhong, Desalination 592 (2024) 118091.
    [33]
    K. Xue, Z. Chen, X. Wu, H. Zhang, H. Chen, J. Li, Green Energy Environ. 10 (2025) 834-844.
    [34]
    X.-J. Guo, C.-H. Xue, S.-T. Jia, J.-Z. Ma, Chem. Eng. J 320 (2017) 330-341.
    [35]
    G. Cao, W. Zhao, L. Han, Y. Teng, S. Xu, H. Nguyen, K.C. Tam, ACS Nano 19 (2025) 3549-3561.
    [36]
    Y. Han, D. Zou, Y. Kang, Z. Zhong, W. Xing, J. Membr. Sci. 692 (2024) 122265.
    [37]
    Y. Wang, Y. Liu, Z. Chen, Y. Liu, J. Guo, W. Zhang, P. Rao, G. Li, Ceram. Int. 48 (2022) 8960-8971.
    [38]
    D. Hotza, M. Di Luccio, M. Wilhelm, Y. Iwamoto, S. Bernard, J.C. Diniz da Costa, J. Membr. Sci. 610 (2020) 118193.
    [39]
    R. Xiong, G. Sun, K. Si, Q. Liu, K. Liu, Powder Technol. 364 (2020) 647-653.
    [40]
    Z. Zhong, W. Xing, X. Li, F. Zhang, Ind. Eng. Chem. Res. 52 (2013) 5455-5461.
    [41]
    H. Yao, D. Zou, Y. Gao, Y. Han, F. Han, Z. Zhong, W. Xing, Sep. Purif. Technol. 357 (2025) 130018.
    [42]
    D. Zou, C. Zhou, Y. Gong, Z. Zhong, W. Xing, Sep. Purif. Technol. 311 (2023) 123258.
    [43]
    D. Zou, Y. Gong, Y. Liu, Z.-X.N. Low, Z. Zhong, W. Xing, J. Membr. Sci. 668 (2023) 121143.
    [44]
    W. Wei, W. Zhang, Q. Jiang, P. Xu, Z. Zhong, F. Zhang, W. Xing, J. Membr. Sci. 540 (2017) 381-390.
    [45]
    W. Wei, Y. Han, J. Chen, F. Han, D. Zou, F. Zhang, Z. Zhong, W. Xing, Sep. Purif. Technol. 302 (2022) 122075.
    [46]
    Y. Zhang, F. Han, D. Zou, Sep. Purif. Technol. 358 (2025) 130328.
    [47]
    Y. Li, W. Cao, L. Zhao, D. Liu, J. Chen, S. Zhang, D. Ding, G. Xiao, J. Eur. Ceram. Soc. 43 (2023) 3849-3853.
    [48]
    Z. Cuo, H. Liu, F. Zhao, W. Li, S. Peng, Y. Chen, Ceram. Int. 44 (2018) 11778-11782.
    [49]
    Y. Gong, D. Zou, Z. Zhong, W. Xing, Sep. Purif. Technol. 292 (2022) 120967.
    [50]
    W. Wang, X. Hu, L. Li, W. Jing, A. Guo, H. Du, Ceram. Int. 45 (2019) 6723-6729.
    [51]
    J. Chen, X. Deng, B. Lin, Y. Fang, Y. Zeng, Z.-X. Low, Z. Zhong, W. Xing, J. Membr. Sci. 723 (2025) 123898.
    [52]
    F. Wang, S. Hao, B. Dong, N. Ke, N.Z. Khan, L. Hao, L. Yin, X. Xu, S. Agathopoulos, J. Alloys Compd. 893 (2022) 162231.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (32) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return