Turn off MathJax
Article Contents
Lijie Liu, Huajian Liu, Huiyue Wang, Kuankuan Liu, Guixin Hu, Yan She, Xueying Wen, Hangyuan Du, Lingling Feng, Jiang Gong. Converting waste polyimide into porous carbon nanofiber for all-weather freshwater and hydroelectricity generation. Green Energy&Environment. doi: 10.1016/j.gee.2025.06.004
Citation: Lijie Liu, Huajian Liu, Huiyue Wang, Kuankuan Liu, Guixin Hu, Yan She, Xueying Wen, Hangyuan Du, Lingling Feng, Jiang Gong. Converting waste polyimide into porous carbon nanofiber for all-weather freshwater and hydroelectricity generation. Green Energy&Environment. doi: 10.1016/j.gee.2025.06.004

Converting waste polyimide into porous carbon nanofiber for all-weather freshwater and hydroelectricity generation

doi: 10.1016/j.gee.2025.06.004
  • The dual system capable of solar-driven interfacial steam production and all-weather hydropower generation is emerging as a potential way to alleviate freshwater shortage and energy crisis. However, the intrinsic mechanism of hydroelectric electricity generation powered by the interaction between seawater and material structure is vague, and it remains challenging to develop dual-functional evaporators with high photothermal conversion efficiency and ionic selectivity. Herein, an all-weather dual-function evaporator based on porous carbon fiber-like (PCF) is acquired through the pyrolysis of barium-based metal-organic framework (Ba-BTEC), which is originated from waste polyimide. The PCF-based evaporator/device exhibits a high steam generation rate of 2.93 kg m-2 h-1 in seawater under 1 kW m-2 irradiation, along with the notable open-circuit voltage of 0.32 V, owing to the good light absorption ability, optimal wettability, and suitable aperture size. Moreover, molecular dynamics simulation result reveals that Na+ tends to migrate rapidly within the nanoporous channels of PCF, owing to a strong affinity between oxygen-containing functional group and water molecule. This work not only proposes an eco-friendly strategy for constructing low-cost full-time freshwater-hydroelectric co-generation device, but also contributes to the understanding of evaporation-driven energy harvesting technology.

     

  • loading
  • [1]
    M. Shannon, P. Bohn, M. Elimelech, J. Georgiadis, B. Marinas, A. Mayes, Nature 452 (2008) 301-310.
    [2]
    X. Meng, W. Xu, Z. Li, J. Yang, J. Zhao, X. Zou, Y. Sun, Y. Dai, Adv. Fiber Mater. 2 (2020) 93-104.
    [3]
    H. Wang, R. Zhang, D. Yuan, S. Xu, L. Wang, Adv. Funct. Mater. 30 (2020) 2003995.
    [4]
    F. Meng, Y. Zhang, S. Zhang, B. Ju, B. Tang, Green Energy Environ. 8 (2023) 267-274.
    [5]
    H. Yang, F. Lu, H. Li, C. Zhang, S. Darling, Z. Xu, Adv. Funct. Mater. 33 (2023) 2304580.
    [6]
    W. Chong, R. Meng, Z. Liu, Q. Liu, J. Hu, B. Zhu, D.K. Macharia, Z. Chen, L. Zhang, Adv. Fiber Mater. 5 (2023) 1063-1075.
    [7]
    Y. Zhang, Y. Wang, B. Yu, K. Yin, Z. Zhang, Adv. Mater. 34 (2022) 2200108.
    [8]
    C. Onggowarsito, S. Mao, X. Zhang, A. Feng, H. Xu, Q. Fu, Energy Environ. Sci. 17 (2024) 2088-2099.
    [9]
    A. Chu, M. Yang, J. Chen, J. Zhao, J. Fang, Z. Yang, H. Li, Green Energy Environ. 9 (2024) 1698-1710.
    [10]
    X. Wu, Y. Lu, X. Ren, P. Wu, D. Chu, X. Yang, H. Xu, Adv. Mater. 36 (2024) 2313090.
    [11]
    T. Xu, Y. Wang, X. Chen, M. Liu, J. Liu, T. Jia, X. Zhao, J. Mater. Chem. A 10 (2022) 21004-21012.
    [12]
    S. Cao, A. Thomas, C. Li, Angew. Chem. Int. Ed. 62 (2023) e202214391.
    [13]
    L. Ren, Q. Zhang, G. Zhao, T. Chen, Y. Wang, X. Xiao, H. Yang, N. Xu, W. Xu, Adv. Fiber Mater. 6 (2024) 1162-1173.
    [14]
    P. He, H. Lan, H. Bai, Y. Zhu, Z. Fan, J. Liu, L. Liu, R. Niu, Z. Dong, J. Gong, Appl. Catal. B-Environ. Energy 337 (2023) 123001.
    [15]
    R. Meng, Y. Lu, L. Zou, H. Du, X. Li, B. Zhu, D.K. Macharia, M. Amidpour, Z. Chen, L. Zhang, Desalination 578 (2024) 117455.
    [16]
    R. Niu, J. Ren, J.J. Koh, L. Chen, J. Gong, J. Qu, X. Xu, J. Azadmanjiri, J. Min, Adv. Energy Mater. 13 (2023) 2302451.
    [17]
    Y. Zhou, T. Ding, Y. Cheng, Y. Huang, W. Wang, J. Yang, L. Xie, G.W. Ho, J. He, Natl. Sci. Rev. 10 (2023) nwad186.
    [18]
    Z. Yu, Y. Su, R. Gu, W. Wu, Y. Li, S. Cheng, Nano Micro Lett. 15 (2023) 214.
    [19]
    C. Zheng, S. Fang, W. Chu, J. Tan, B. Tian, X. Jiang, W. Guo, Nano Res. 16 (2023) 11320-11325.
    [20]
    B. Zhang, X. Guan, Q. Han, H. Guo, S. Zheng, X. Sun, A. El Gowily, M. Abosheasha, Y. Zhu, M. Ueda, M. An, H. Fan, Y. Ito, J. Energy Chem. 96 (2024) 129-144.
    [21]
    M. Chen, S. Li, S. Guo, H. Yan, S.C. Tan, Green Energy Environ. 9 (2024) 1812-1821.
    [22]
    G. Zan, S. Li, K. Zhao, H. Kim, E. Shin, K. Lee, J. Jang, G. Kim, Y. Kim, W. Jiang, T. Kim, W. Kim, C. Park, Energy Environ. Sci. 18 (2025) 53-96.
    [23]
    Q. Tang, X. Wang, P. Yang, B. He, Angew. Chem. Int. Ed. 55 (2016) 5243-5246.
    [24]
    F. Zhao, Y. Liang, H. Cheng, L. Jiang, L. Qu, Energy Environ. Sci. 9 (2016) 912-916.
    [25]
    Y. Qin, Y. Wang, X. Sun, Y. Li, H. Xu, Y. Tan, Y. Li, T. Song, B. Sun, Angew. Chem. Int. Ed. 59 (2020) 10619-10625.
    [26]
    K. Saha, J. Deka, K. Raidongia, ACS Appl. Nano Mater. 2 (2019) 5850-5856.
    [27]
    X. Wang, F. Lin, X. Wang, S. Fang, J. Tan, W. Chu, R. Rong, J. Yin, Z. Zhang, Y. Liu, W. Guo, Chem. Soc. Rev. 51 (2022) 4902-4927.
    [28]
    Q. Ma, Q. He, P. Yin, H. Cheng, X. Cui, Q. Yun, H. Zhang, Adv. Mater. 32 (2020) 2003720.
    [29]
    T. Yun, J. Bae, A. Rothschild, I. Kim, ACS Nano 13 (2019) 12703-12709.
    [30]
    Q. Hu, Y. Ma, G. Ren, B. Zhang, S. Zhou, Sci. Adv. 8 (2022) eabm8047.
    [31]
    J. Zhang, P. Cui, J. Wang, H. Meng, Y. Ge, C. Feng, H. Liu, Y. Meng, Z. Zhou, N. Xuan, B. Zhang, G. Cheng, Z. Du, Adv. Sci. 10 (2023) 2304482.
    [32]
    J. Lin, Z. Zhang, X. Lin, X. Cai, S. Fu, X. Fang, Y. Ding, X. Wang, G. Sebe, G. Zhou, Adv. Funct. Mater. 34 (2024) 2314231.
    [33]
    L. Li, S. Feng, Y. Bai, X. Yang, M. Liu, M. Hao, S. Wang, Y. Wu, F. Sun, Z. Liu, T. Zhang, Nat. Commun. 13 (2022) 1043.
    [34]
    L. Li, C. Xue, Q. Chang, X. Ren, N. Li, J. Yang, S. Hu, H. Xu, Adv. Mater. 36 (2024) 2401171.
    [35]
    H. Wang, X. Wen, K. Liu, Q. Liu, G. Hu, H. Liu, Y. She, R. Niu, T. Tang, J. Gong, SusMat 4 (2024) e242.
    [36]
    A. Zhang, K. Wang, M.J. Nine, M. Cao, H. Zong, Z. Liu, H. Guo, J. Liu, D. Losic, Green Energy Environ. 9 (2024) 378-389.
    [37]
    W. Li, T. Li, B. Deng, T. Xu, G. Wang, W. Hu, C. Si, Adv. Compos. Hybrid Mater. 7 (2024) 52.
    [38]
    J. Han, Z. Dong, L. Hao, J. Gong, Q. Zhao, Green Energy Environ. 8 (2023) 151-162.
    [39]
    N. Liu, L. Hao, B. Zhang, R. Niu, J. Gong, T. Tang, Energy Environ. Mater. 5 (2022) 617-626.
    [40]
    T. Ding, K. Liu, J. Li, G. Xue, Q. Chen, L. Huang, B. Hu, J. Zhou, Adv. Funct. Mater. 27 (2017) 1700551.
    [41]
    N. Xu, X. Hu, W. Xu, X. Li, L. Zhou, S. Zhu, J. Zhu, Adv. Mater. 29 (2017) 1606762.
    [42]
    Y. Xu, J. Xu, J. Zhang, X. Li, B. Fu, C. Song, W. Shang, P. Tao, T. Deng, Nano Energy 93 (2022) 106882.
    [43]
    Y. Wu, J. Ma, S. Zang, W. Zhou, Z. Wang, M. Han, S.M. Osman, C. Wang, Y. Yamauchi, J. You, M. An, L. Wang, Z. Yuan, Chem. Eng. J. 472 (2023) 144600.
    [44]
    L. Zhu, M. Gao, C.K.N. Peh, X. Wang, G.W. Ho, Adv. Energy Mater. 8 (2018) 1702149.
    [45]
    Z. Li, X. Ma, D. Chen, X. Wan, X. Wang, Z. Fang, X. Peng, Adv. Sci. 8 (2021) 2004552.
    [46]
    W. Li, Z. Zheng, Z. Qian, H. Liu, X. Wang, Adv. Funct. Mater. 34 (2024) 2316504.
    [47]
    W. Deng, G. Feng, L. Li, X. Wang, H. Lu, X. Li, J. Li, W. Guo, J. Yin, Energy Environ. Sci. 16 (2023) 4442-4452.
    [48]
    H. Zhou, S. Kitagawa, Chem. Soc. Rev. 43 (2014) 5415-5418.
    [49]
    Z. Qian, R. Zhang, Y. Xiao, H. Huang, Y. Sun, Y. Chen, T. Ma, X. Sun, Adv. Energy Mater. 13 (2023) 2300086.
    [50]
    M. Hao, M. Qiu, H. Yang, B. Hu, X. Wang, Sci. Total Environ. 760 (2021) 143333.
    [51]
    Z. Hu, Y. Wang, D. Zhao, Chem. Soc. Rev. 50 (2021) 4629-4683.
    [52]
    M. Hu, J. Reboul, S. Furukawa, N.L. Torad, Q. Ji, P. Srinivasu, K. Ariga, S. Kitagawa, Y. Yamauchi, J. Am. Chem. Soc. 134 (2012) 2864-2867.
    [53]
    Z. Zhou, Q. Zhu, Y. Liu, Y. Zhang, Z. Jia, G. Wu, Nano Micro Lett. 15 (2023) 137.
    [54]
    H. Wang, C. Tang, L. Wang, Z. Sun, X. Hu, Appl. Catal. B-Environ. Energy 333 (2023) 122755.
    [55]
    C. Wang, H. Chu, C. Wang, Coord. Chem. Rev. 518 (2024) 216106.
    [56]
    P. He, Z. Hu, Z. Dai, H. Bai, Z. Fan, R. Niu, J. Gong, Q. Zhao, T. Tang, ChemSusChem 16 (2023) e202201935.
    [57]
    H. Li, J. Lei, L. Zhu, Y. Yao, Y. Li, T. Li, C. Qiu, Green Energy Environ. 9 (2024) 1650-1665.
    [58]
    H. Liu, L. Liu, Z. Fan, J. Liu, H. Wang, X. Wen, G. Hu, K. Liu, R. Niu, J. Gong, Chem. Eng. J. 485 (2024) 149690.
    [59]
    B. Shao, D. Huang, R. Huang, X. He, Y. Luo, Y. Xiang, L. Jiang, M. Dong, S. Li, Z. Zhang, J. Huang, Angew. Chem. Int. Ed. 63 (2024) e202409270.
    [60]
    L. Yu, L. Feng, Z. Wei, S. Wang, Y. Feng, Y. Shen, J. Cai, J. Wu, Y. Xiao, Adv. Funct. Mater. 33 (2023) 2300309.
    [61]
    X. Cen, Y. Sun, C. Yu, C. Geng, Z. Gu, D. Ao, Z. Zhang, Z. Qiao, C. Zhong, Sep. Purif. Technol. 334 (2024) 125995.
    [62]
    S. Chen, Y. Xia, B. Zhang, H. Chen, G. Chen, S. Tang, J. Hazard. Mater. 408 (2021) 124956.
    [63]
    Z. Yang, Y. Zhang, S. Li, X. Zhang, T. Wang, Q. Wang, ACS Sustainable Chem. Eng. 8 (2020) 18869-18878.
    [64]
    Z. Tian, Q. Zhao, X. Liu, Y. Wang, J. Zhao, Y. Wang, X. Hou, ACS Sustainable Chem. Eng. 11 (2023) 11590-11600.
    [65]
    Y. Chen, X. Lu, G. Ma, M. Kim, R. Yu, H. Zhong, Y.H.T. Chan, M. Tan, Y. Liu, M.G. Li, ACS Nano 19 (2025) 5769-5780.
    [66]
    X. Cui, G. Xu, Z. Gao, S. Zhu, Y. Zhao, X. Mo, Z. Gao, Z. Zheng, J. Zhang, Energy Fuel 37 (2023) 4038-4047.
    [67]
    Y. Liu, Q. Ren, S. Liang, L. Li, S. Wang, Z. Shi, Z. Pan, T. Wang, ACS Appl. Energy Mater. 5 (2022) 1205-1217.
    [68]
    W. He, L. Zhou, M. Wang, Y. Cao, X. Chen, X. Hou, Sci. Bull. 66 (2021) 1472-1483.
    [69]
    K.W. Tan, C.M. Yap, Z. Zheng, C.Y. Haw, P.S. Khiew, W.S. Chiu, Adv. Sustainable Syst. 6 (2022) 2100416.
    [70]
    J. Hu, Y. Sun, Z. Liu, B. Zhu, L. Zhang, N. Xu, M. Zhu, J. Zhu, Z. Chen, Prog. Mater Sci. 150 (2025) 101407.
    [71]
    W. Sun, A. Du, Y. Feng, J. Shen, S. Huang, J. Tang, B. Zhou, ACS Nano 10 (2016) 9123-9128.
    [72]
    F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Nat. Rev. Mater. 5 (2020) 388-401.
    [73]
    M. Khan, R. Wellard, S. Nagy, M. Joardder, M. Karim, Int. J. Therm. Sci. 117 (2017) 266-273.
    [74]
    H. Yu, D. Wang, H. Jin, P. Wu, X. Wu, D. Chu, Y. Lu, X. Yang, H. Xu, Adv. Funct. Mater. 33 (2023) 2214828.
    [75]
    X. Song, X. Li, B. Zhu, S. Sun, Z. Chen, L. Zhang, Adv. Fiber Mater. 6 (2024) 1569-1582.
    [76]
    J. Hu, M.M. Pazuki, R. Li, M. Salimi, H. Cai, Y. Peng, Z. Liu, T. Zhao, M. Amidpour, Y. Wei, Z. Chen, Adv. Mater. 37 (2025) 2420482.
    [77]
    W. Olthuis, B. Schippers, J. Eijkel, A. Berg, Sensor. Actuat. B-Chem. 111 (2005) 385-389.
    [78]
    B. Shao, Y. Song, Z. Song, Y. Wang, Y. Wang, R. Liu, B. Sun, Adv. Energy Mater. 13 (2023) 2204091.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (318) PDF downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return