Turn off MathJax
Article Contents
Lu Cai, Naibing Li, Bingbing Li, Tianchi Zhou, Zhengyuan Zhou, Yongnan Zhou, Xi Luo, Kaiying Zhao, Yuekun Lai, Jinli Qiao. Enhanced hydroxide conductivity in zwitterionic polyacrylate-based anion exchange membranes via side-chain length optimization. Green Energy&Environment. doi: 10.1016/j.gee.2025.06.003
Citation: Lu Cai, Naibing Li, Bingbing Li, Tianchi Zhou, Zhengyuan Zhou, Yongnan Zhou, Xi Luo, Kaiying Zhao, Yuekun Lai, Jinli Qiao. Enhanced hydroxide conductivity in zwitterionic polyacrylate-based anion exchange membranes via side-chain length optimization. Green Energy&Environment. doi: 10.1016/j.gee.2025.06.003

Enhanced hydroxide conductivity in zwitterionic polyacrylate-based anion exchange membranes via side-chain length optimization

doi: 10.1016/j.gee.2025.06.003
  • Developing advanced ion-conductive networks is crucial for anion exchange membranes (AEMs). A flexible molecular structure facilitates the formation of ion clusters and results in enhanced ionic conductivity. Polyacrylates, known for their outstanding flexibility and chemical stability, hold significant potential as polymer electrolyte membranes. In this work, we innovatively constructed a series of polyacrylate-based AEMs decorated with pendant zwitterions (designated as PSBPA-X, BSBPA-X, where X=20, 30, 40). Specifically, the spacer length between the zwitterions is strategically optimized to enhance the ionic conductivity. Atomic force microscopy reveals that a longer spacer length between the zwitterions promotes the microphase separation and the formation of advanced water channels, which facilitates the OH- transport in the BSBPA-40 membrane. Moreover, the stronger electrostatic potential and lower interaction energy between the BSBPA-40 and OH- further contributes to efficient OH- hopping transmission. Consequently, the BSBPA-40 membrane demonstrates the highest OH- conductivity, achieving 102.1 mS/cm at 80 °C and 90% relative humidity, significantly surpassing that of the PSBPA-40 membrane (75.2 mS/cm). Additionally, the BSBPA-40 membrane exhibits remarkable flexibility with an improved breaking elongation of 480.5% due to the ionic cross-linking between the zwitterions. Notably, the BSBPA-40 membrane-based zinc-air battery achieves an outstanding power density of 156.7 mW/cm2 at room temperature, while its water electrolysis performance reaches 2.1 A/cm2 at 2.0 V. These results indicate that the developed membranes hold great promise for applications in sustainable and clean energy technologies.

     

  • loading
  • [1]
    M. Ishaq, I. Dincer, Energy Convers. Manage 306 (2024) 118304.
    [2]
    M. Wang, Q. Zou, X. Dong, N. Xu, R. Shao, J. Ding, Y. Zhang, J. Qiao, Green Energy Environ. 8 (2023) 893-903.
    [3]
    I. Arunkumar, A.R. Kim, S.H. Lee, D.J. Yoo, Int. J. Hydrogen Energy 52 (2024) 139-153.
    [4]
    N. Xu, Y. Zhang, M. Wang, X. Fan, T. Zhang, L. Peng, X.D. Zhou, J. Qiao, Nano Energy 65 (2019) 104021.
    [5]
    P.S. Jhu, C.W. Chang, C.C. Cheng, Y.C. Ting, T.Y. Lin, F.Y. Yen, P.W. Chen, S.Y. Lu, Nano Energy 126 (2024) 109703.
    [6]
    J. Chen, J.J. Bailey, L. Britnell, M.P. Page, M. Sahoo, Z. Zhang, A. Strudwick, J. Hack, Z. Guo, Z. Ji, P. Martin, D.J.L. Brett, P.R. Shearing, S.M. Holmes, Nano Energy 93 (2022) 106829.
    [7]
    I. Arunkumar, R. Gokulapriyan, V. Sakthivel, A.R. Kim, M.S. Oh, J.Y. Lee, S. Kim, S. Lee, D.J. Yoo, ACS Appl. Energy Mater. 6 (2023) 7702-7713.
    [8]
    T. Wang, D. Chen, C. Wang, H. Wei, Y. Ding, Adv. Funct. Mater. (2025) 2422504.
    [9]
    I. Arunkumar, M.M. Rana, A. Jeevitha, R. Gokulapriyan, J.H. Yu, D.J. Yoo, ACS Sustainable Chem. Eng. 12 (2024) 9361-9375.
    [10]
    H. Kim, S. Jeon, J. Choi, Y.S. Park, S.J. Park, M.S. Lee, Y. Nam, H. Park, M. Kim, C. Lee, S.E. An, J. Jung, S. Kim, J.F. Kim, H.S. Cho, A.S. Lee, J.H. Lee, ACS Nano 18 (2024) 32694-32704.
    [11]
    S. Sung, T.S. Mayadevi, K. Min, J. Lee, J.E. Chae, T.H. Kim, J. Membr. Sci. 619 (2021) 118774.
    [12]
    M. Kumari, J.C. Douglin, D.R. Dekel, J. Membr. Sci. 626 (2021) 119167.
    [13]
    M. Guo, Z. Wang, Y. Xu, X. Zhu, J. Membr. Sci. 707 (2024) 123026.
    [14]
    W. Lu, D. Shi, H. Zhang, X. Li, Energy Storage Mater. 17 (2019) 325-333.
    [15]
    C.R. Peltier, Z. Rhodes, A.J. Macbeth, A. Milam, E. Carroll, G.W. Coates, S.D. Minteer, ACS Energy Lett. 7 (2022) 4118-4128.
    [16]
    D. Cao, F. Nie, M. Liu, X. Sun, B. Wang, F. Wang, N. Li, B. Wang, Z. Ma, L. Pan, Y. Li, J. Membr. Sci. 661 (2022) 120921.
    [17]
    J. Han, C. Liu, Y. Lu, X. Zheng, W. Li, Y. Liu, X. Yang, Z. Ren, M. Hu, L. Xiao, L. Zhuang, Polymer 285 (2023) 126377.
    [18]
    B. Shi, X. Pang, B. Lyu, H. Wu, J. Shen, J. Guan, X. Wang, C. Fan, L. Cao, T. Zhu, Y. Kong, Y. Liu, Z. Jiang, Adv. Mater. 35 (2023) e2211004.
    [19]
    F. Chen, F. Gao, X. Guo, L. Liao, X. Gao, L. Shen, J. Ma, Chem. Eng. J. 507 (2025) 160425.
    [20]
    Z. Yu, W.T. Gao, Y.J. Liu, Q.-G. Zhang, A.M. Zhu, Q.-L. Liu, J. Colloid Interf. Sci. 651 (2023) 404-414.
    [21]
    F. Xu, Y. Han, K. Huang, Y. Li, J. Ding, B. Lin, J. Membr. Sci. 694 (2024) 122434.
    [22]
    Z. Liu, K. Lin, W. Yin, L. Liang, Y. Zhu, J. Membr. Sci. 708 (2024) 123034.
    [23]
    R. Ren, S. Zhang, H.A. Miller, F. Vizza, J.R. Varcoe, Q. He, J. Membr. Sci. 591 (2019) 117320.
    [24]
    J.W. Heo, L. An, M.S. Kim, D.H. Youn, Y.S. Kim, Int. J Biol. Macromol. 253 (2023) 127421.
    [25]
    W. Kuchle, M. Dolg, H. Stoll, H. Preuss, Mol. Phys. 74 (1991) 1245-1263.
    [26]
    A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 102 (2009) 073005.
    [27]
    C. Liu, W. Xu, C. Mei, M. Li, W. Chen, S. Hong, W.Y. Kim, S.Y. Lee, Q. Wu, Adv. Energy Mater. 11 (2021) 2003902.
    [28]
    X. Cheng, C. Li, X. Zou, B. Sun, L. Wang, W. Wang, X. Meng, Chem. Eng. J. 483 (2024) 149328.
    [29]
    H. Zhang, T. Wang, L. Fan, X. Liu, Y. Dong, M. Chen, Y. Wang, Q. Zhang, Y. Zou, J. Membr. Sci. 692 (2024) 122313.
    [30]
    T. Ban, Z. Wang, S. Liu, Z. Jiang, R. Zeng, Y. Wang, Y. Xu, X. Zhu, J. Membr. Sci. 697 (2024) 122540.
    [31]
    F. Liu, K. Miyatake, A.M.A. Mahmoud, V. Yadav, F. Xian, L. Guo, C.Y. Wong, T. Iwataki, Y. Shirase, K. Kakinuma, M. Uchida, Adv. Energy Mater. (2024) 2404089.
    [32]
    L. Meng, T. Lan, J. Xu, P. Zhao, J. Lei, J. Membr. Sci. 694 (2024) 122409.
    [33]
    F. Xu, Y. Chen, X. Cao, J. Li, B. Lin, N. Yuan, J. Ding, J. Power Sources 545 (2022) 231880.
    [34]
    J. Xu, S. Dong, P. Li, W. Li, F. Tian, J. Wang, Q. Cheng, Z. Yue, H. Yang, Chem. Eng. J. 424 (2021) 130314.
    [35]
    H. Wang, K. Wang, R. Zhang, B. Liang, Z. Chen, M. Wei, J. Xiong, D. Zhong, Y. Zuo, P. Pei, Chem. Eng. J. 498 (2024) 155539.
    [36]
    K.H. Lee, J.Y. Chu, A.R. Kim, D.J. Yoo, ACS Sustainable Chem. Eng. 9 (2021) 8824-8834.
    [37]
    L. Liu, C. Wang, Z. He, H. Liu, Q. Hu, N. Naik, Z. Guo, J. Membr. Sci. 624 (2021) 119118.
    [38]
    Q. Wang, Z. Zhang, P. Lv, Z. Peng, J. Yang, Chem. Eng. J. 505 (2025) 158922.
    [39]
    K.H. Lee, J.Y. Chu, A.R. Kim, D.J. Yoo, ACS Sustainable Chem. Eng. 9 (2021) 8824-8834.
    [40]
    G. Liu, W.C. Tsen, S.C. Jang, F. Hu, F. Zhong, B. Zhang, J. Wang, H. Liu, G. Wang, S. Wen, C. Gong, J. Membr. Sci. 611 (2020) 118242.
    [41]
    D. Wu, N. Zhang, W. Gao, Q. Li, X. Gao, S. Wang, Q. Che, J. Mater. Chem. A 12 (2024) 28805-28817.
    [42]
    H. Wu, X. Guo, L. Gao, T. Zhou, Z. Niu, X. Dong, Y. Zhou, Z. Li, F.F. Hong, J. Qiao, Chem. Eng. J. 454 (2023) 139807.
    [43]
    K.H. Lee, J.Y. Chu, A.R. Kim, H.G. Kim, D.J. Yoo, J. Membr. Sci. 634 (2021) 119435.
    [44]
    L. Li, J. Wang, M. Hussain, L. Ma, N.A. Qaisrani, S. Ma, L. Bai, X. Yan, X. Deng, G. He, F. Zhang, J. Membr. Sci. 624 (2021) 119088.
    [45]
    J.S. Olsson, T.H. Pham, P. Jannasch, Macromolecules 50 (2017) 2784-2793.
    [46]
    W. Liu, S. Chen, W. Li, X. Liu, J. Fu, J. Zhang, H. Wang, S. Lu, Y. Xiang, J. Membr. Sci. 677 (2023) 121618.
    [47]
    B. Shi, J. Zhang, W. Wu, J. Wang, J. Huang, J. Membr. Sci. 569 (2019) 166-176.
    [48]
    W. Liu, H. Bai, Q. Zhang, Z. Zhang, W. Li, H. Wang, S. Lu, Y. Xiang, J. Membr. Sci. 698 (2024) 122616.
    [49]
    T. Zhu, D. Zhu, J. Liang, L. Zhang, F. Huang, L. Xue, J. Energy Chem. 85 (2023) 91-101.
    [50]
    H. Xu, J. Fang, M. Guo, X. Lu, X. Wei, S. Tu, J. Membr. Sci. 354 (2010) 206-211.
    [51]
    Y. Xiao, H. Chen, X. Shen, Y. Li, L. Zhang, P. Cheng, H. Han, N. Tang, J. Membr. Sci. 709 (2024) 123077.
    [52]
    S.Q. Fu, B. Hu, J.H. Ge, M.Z. Zhu, P.-P. Huang, B. Xue, N. Li, P.N. Liu, Macromolecules 56 (2023) 6037-6050.
    [53]
    H. Wu, T. Zhou, B. Wang, J. Qiao, J. Materiomics 9 (2023) 587-600.
    [54]
    N. Li, Y. Leng, M.A. Hickner, C.Y. Wang, J. Am. Chem. Soc. 135 (2013) 10124-10133.
    [55]
    X. Su, S. Nan, Y. Gu, W. Wei, R. He, Chem. Eng. J. 482 (2024) 149056.
    [56]
    S. Xu, W. Wei, X. Su, R. He, Chem. Eng. J. 455 (2023) 140776.
    [57]
    Z. Xu, H. Tang, N. Li, J. Membr. Sci. 610 (2020) 118227.
    [58]
    M. Jiao, L. Dai, H.R. Ren, M. Zhang, X. Xiao, B. Wang, J. Yang, B. Liu, G. Zhou, H.M. Cheng, Angew. Chem., Int. Ed. 62 (2023) e202301114.
    [59]
    W. Peng, Z. Chen, J. Jin, S. Yang, J. Zhang, G. Li, ACS Appl. Mater. Interfaces 14 (2022) 31792-31802.
    [60]
    Z. Song, X. Liu, J. Ding, J. Liu, X. Han, Y. Deng, C. Zhong, W. Hu, ACS Appl. Mater. Interfaces 14 (2022) 49801-49810.
    [61]
    W. Li, Y. Wang, R. Liu, W. Chen, H. Zhang, Z. Zhang, ACS Sustainable Chem. Eng. 11 (2023) 3732-3739.
    [62]
    Y. Zhang, Y. Chen, M. Alfred, F. Huang, S. Liao, D. Chen, D. Li, Q. Wei, Compos. Part B-Eng. 224 (2021) 109228.
    [63]
    T. Zhang, K. Kuang, L. Lu, Q. Li, Y. Sun, H. Miao, J Energy Storage 100 (2024) 113629.
    [64]
    G. Zhang, X. Cai, C. Li, J. Yao, Z. Tian, F. Zhang, Y. Liu, W. Liu, X. Zhang, Int. J Biol. Macromol. 221 (2022) 446-455.
    [65]
    L. Hang, T. Zhang, D. Men, L. Liang, Y. Chen, G. Jiang, Mater. Today Phys. 29 (2022) 100924.
    [66]
    H. Pan, C. Zhang, Z. Lu, J. Dou, X. Huang, J. Yu, J. Wu, H. Li, X. Chen, Chem. Eng. J. 477 (2023) 147022.
    [67]
    W.T. Gao, X.L. Gao, Y.S. Choo, J.J. Wang, Z.H. Cai, Q.G. Zhang, A.M. Zhu, Q.L. Liu, Chem. Eng. J. 466 (2023) 143107.
    [68]
    S. Seetharaman, R. Balaji, K. Ramya, K.S. Dhathathreyan, M. Velan, Int. J. Hydrogen Energy 38 (2013) 14934-14942.
    [69]
    C. Wang, Z. Zhou, T. Zhou, X. Luo, A. Gao, Y. Zhou, X. Yang, Z. Li, Q. Yang, J. Qiao, Adv. Funct. Mater. 34 (2024) 10009.
    [70]
    L. Liu, L. Bai, Z. Liu, S. Miao, J. Pan, L. Shen, Y. Shi, N. Li, J. Membr. Sci. 665 (2023) 121135.
    [71]
    X. Luo, N. Xu, Y. Zhou, X. Yang, W. Yang, G. Liu, J.K. Lee, J. Qiao, eScience 4 (2024) 100290.
    [72]
    Y. Liao, G. Deng, H. Wu, L. Ding, H. Wang, Adv. Funct. Mater. 34 (2023) 2309871.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (34) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return