Turn off MathJax
Article Contents
Jiajun Cui, Zhenzhen Wang, Yongqiang Gu, Ting Xu, Tairan Pang, Chuanling Si, Weiwei Huan, Jie Li. Single-atom Mn-modified Biomimetic Phthalocyanine Covalent Organic Frameworks with Tunable Pendant Groups for High-efficiency Sodium Chloride Batteries. Green Energy&Environment. doi: 10.1016/j.gee.2025.06.002
Citation: Jiajun Cui, Zhenzhen Wang, Yongqiang Gu, Ting Xu, Tairan Pang, Chuanling Si, Weiwei Huan, Jie Li. Single-atom Mn-modified Biomimetic Phthalocyanine Covalent Organic Frameworks with Tunable Pendant Groups for High-efficiency Sodium Chloride Batteries. Green Energy&Environment. doi: 10.1016/j.gee.2025.06.002

Single-atom Mn-modified Biomimetic Phthalocyanine Covalent Organic Frameworks with Tunable Pendant Groups for High-efficiency Sodium Chloride Batteries

doi: 10.1016/j.gee.2025.06.002
  • Rechargeable chlorine-based battery recently emerged as a promising substitute for energy storage systems due to their high average operating voltage (∼3.7 V) and large theoretical capacity of ∼754.9 mAh g-1. However, insufficient supply of chlorine (Cl2) and sluggish oxidation of NaCl to Cl2 limit its practical application. Covalent Organic Frameworks (COFs) have the potential to be ideal Cl2 host materials as Cl2 adsorbents for their abundant porosity and easily modifiable nature. In this work, the single atom Mn coordinated biomimetic phthalocyanine COFs is used for Cl2 capture and catalyst. The DFT reveals that ASMn and -NH2 significantly change the microenvironment around the active site, effectively promote the oxidation of NaCl. When applied as the cathode material for Na-Cl2 batteries, the SAMn-COFs-NH2 electrode exhibits large reversible capacities and excellent high-rate cycling performances throughout 200 cycles based on the mechanism of highly reversible NaCl/Cl2 redox reactions. Even at the temperature as low as -40 oC, the SAMn-COFs-NH2 cathode showed stable discharge capacities at ∼1000 mAh g-1 over 50 cycles with a voltage plateau of ∼3.3 V. This work may provide new insights for the investigation of chlorine-based electrochemical redox mechanisms and the design of green nanoscaled electrodes for high-property chlorine-based batteries.

     

  • loading
  • [1]
    G. Zhu, X. Tian, H. C. Tai, Y. Y. Li, J. Li, H. Sun, P. Liang, M. Angell, C. L. Huang, C.S. Ku, W. H. Hung, S. K. Jiang, Y. Meng, H. Chen, M. C. Lin, B. J. Hwang, H. Dai, Nature 596 (2021) 525-530.
    [2]
    Q. Xu, S. Tang, N. Li, Y. Wang, X. Zhao, X. Zhang, S. Geng, B. Yuan, S. Wang, Z. Ouyang, M. Liao, L. Ma, M. Shang, Y. Sun, H. Peng, H. Sun, Nat. Commun. 16 (2025) 1946.
    [3]
    W. Li, Y. Xu, G. Wang, T. Xu, C. Si, Adv. Energy Mater. 14 (2024) 2403593.
    [4]
    Z. Xie, Z. Zhu, Z. Liu, M. Sajid, N. Chen, M. Wang, Y. Meng, Q. Peng, S. Liu, W. Wang, T. Jiang, K. Zhang, W. Chen, J. Am. Chem. Soc. 145 (2023) 25422-25430.
    [5]
    Y. Xu, L. Jiao, J. Ma, P. Zhang, Y. Tang, L. Liu, Y. Liu, H. Ding, J. Sun, M. Wang, Z. Li, H. L. Jiang, W. Chen, Joule 7 (2023) 515-528.
    [6]
    A. E. Kharbachi, O. Zavorotynska, M. Latroche, F. Cuevas, V. Yartys, M. Fichtner, J Alloy. Compd. 817 (2020) 153261.
    [7]
    C. Ma, W. Feng, D. Kong, X. Wei, X. Gong, J. Yang, J. Han, L. Zhi, Small, 20 (2024) 2310978.
    [8]
    R. Sharma, H. Kumar, G. Kumar, S. Sharma, R. Aneja, A. K. Sharma, R. Kumar, P. Kumar, Chem. Eng. J. 468 (2023) 143706.
    [9]
    T. Pang, Z. Xue, G. Wang, J. Li, W. Sui, C. Si, Angew. Chem. Int. Ed. (2025) e202503195.
    [10]
    Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin, Y. Cui, W. Chen, Chem. Rev. 122 (2022) 16610-16751.
    [11]
    B. M. Ahn, C. W. Ahn, B. D. Hahn, J. J. Choi, Y. D. Kim, S. K. Lim, K. Jung, Y. C. Park, J. H. Choi, Compos. Part B-Eng. 168 (2019) 442-447.
    [12]
    W. Feng, X. Wei, J. Yang, C. Ma, Y. Sun, J. Han, D. Kong, L. Zhi, Nat. Commun. 15 (2024) 6904.
    [13]
    L. Zhu, Y. Cao, T. Xu, H. Yang, L. Wang, L. Dai, F. Pan, C. Chen, C. Si, Energy Environ. Sci. (2025).
    [14]
    Y. Ge, Y. Meng, L. Liu, J. Li, X. Huang, D. Xiao, Green Energy Environ. 9 (2024) 1822-1834.
    [15]
    Y. Cao, W. Peng, Y. Li, F. Zhang, Y. Zhu, X. Fan, Green Energy Environ. 8 (2023) 360-382.
    [16]
    Y. Xu, M. Wang, M. Sajid, Y. Meng, Z. Xie, L. Sun, J. Jin, W. Chen, S. Zhang, Angew. Chem. Int. Ed. (2023) e202315931.
    [17]
    Y. Cao, W. Sun, C. Guo, L. Zheng, M. Yao, Y. Wang, ACS Nano 16 (2022) 9830-9842.
    [18]
    W. Li, L. Zhu, Y. Xu, G. Wang, T. Xu, C. Si, Adv. Mater. 37 (2025) 2415761.
    [19]
    L. Zhu, H. Yang, T. Xu, F. Shen, C. Si, Nano-Micro Lett. (2025) 87.
    [20]
    C. Guo, T. Liu, Z. Wang, Y. X. Wang, M. Steven, Y. Luo, X. Luo, Y. Wang, Angew. Chem. Int. Ed. (2024) e202415759.
    [21]
    P. Li, N. Zhang, X. Li, S. Tang, Green Energy Environ. 8 (2023) 915-926.
    [22]
    B. C. Patra, S. K. Das, A. Ghosh, A. R. K, P. Moitra, M. Addicoat, S. Mitra, A. Bhaumik, S. Bhattacharya, A. Pradhan, J. Mater. Chem. A 6 (2018) 16655-16663.
    [23]
    Y. Zhao, C. Yang, Y. Yu, Chinese Chem. Lett. 35 (2024) 108865.
    [24]
    S. Haldar, A. Schneemann, S. Kaskel, J. Am. Chem. Soc. 145 (2023) 13494-13513.
    [25]
    X. Zhao, P. Pachfule, A. Thomas, Chem. Soc. Rev. 50 (2021) 6871-6913.
    [26]
    Z. Xie, L. Sun, M. Sajid, Y. Feng, Z. Lv, W. Chen, Chem. Soc. Rev. 53 (2024) 8424-8456.
    [27]
    Y. Xu, S. Zhang, M. Wang, Y. Meng, Z. Xie, L. Sun, C. Huang, W. Chen, J. Am. Chem. Soc. 145 (2023) 27877-27885.
    [28]
    D. Zhu, G. Xu, M. Barnes, Y. Li, C. P. Tseng, Z. Zhang, J. J. Zhang, Y. Zhu, S. Khalil, M. M. Rahman, R. Verduzco, P. M. Ajayan, Adv. Funct. Mater. 31 (2021) 2100505.
    [29]
    T. Pang, G. Wang, W. Sui, T. Xu, D. Wang, C. Si, Coordin. Chem. Rev. (2025) 216426.
    [30]
    T. Banerjee, R. Kundu, Energy Fuel. 38 (2024) 12487-12509.
    [31]
    T. Xie, S. Chen, Y. Yue, T. Sheng, N. Huang, Y. Xiong, Angew. Chem. Int. Ed. (2024) e202411188.
    [32]
    M. Tong, F. Sun, G. Xing, C. Tian, L. Wang, H. Fu, Angew. Chem. Int. Ed. 62 (2023) e202314933.
    [33]
    C. Xing, P. Mei, Z. Mu, B. Li, X. Feng, Y. Zhang, B. Wang, Angew. Chem. Int. Ed. 61 (2022) e202201378.
    [34]
    J. Yang, D. Zeng, Q. Zhang, R. Cui, M. Hassan, L. Dong, J. Li, Y. He, Appl. Catal. B-Environ. 279 (2020) 119363.
    [35]
    L. Han, M. Hou, P. Ou, H. Cheng, Z. Ren, Z. Liang, J. A. Boscoboinik, A. Hunt, I. Waluyo, S. Zhang, L. Zhuo, J. Song, X. Liu, J. Luo, H. Xin, ACS Catal. 11 (2021) 509-516.
    [36]
    Q. Yang, X. Qu, H. Cui, X. He, Y. Shao, Y. Zhang, X. Guo, A. Chen, Z. Chen, R. Zhang, D. Kong, Z. Shi, J. Liu, J. Qiu, C. Zhi, Angew. Chem. Int. Ed. 61 (2022) e202206471.
    [37]
    Y. Cao, Q. Xu, Y. Sun, J. Shi, Y. Xu, Y. Tang, X. Chen, S. Yang, Z. Jiang, H. D. Umi, X. Li, Y. Wang, P. Natl. Acad. Sci. USA 121 (2024) e2315407121.
    [38]
    G. Zhu, P. Liang, C. L. Huang, H. Dai, P. Natl. Acad. Sci. USA 120 (2023) e2310903120.
    [39]
    S. Park, B. SenthilKumar, K. Kim, S. M. Hwang, Y. Kim. J. Mater. Chem. A 4 (2016) 7207-7213.
    [40]
    P. Li, C. Ma, Y. Wang, S. Zhai, G. Ma, D. Kong, Z. Li, Adv. Mater. 37 (2025) 2418990.
    [41]
    G. Zhu, P. Liang, C. L. Huang, C. C. Huang, Y. Y. Li, S. C. Wu, J. Li, F. Wang, X. Tian, W. H. Huang, S. K. Jiang, W. H. Hung, H. Chen, M. C. Lin, B. J. Hwang, H. Dai, J. Am. Chem. Soc. 144 (2022) 22505-22513.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (32) PDF downloads(2) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return