Volume 10 Issue 4
Apr.  2025
Turn off MathJax
Article Contents
Amalia M. Grigoras, Federica Valentini, Loredana Latterini, Luigi Vaccaro. Heterogeneous iron-based catalysts for a sustainable photoinduced nitrogen fixation. Green Energy&Environment, 2025, 10(4): 733-755. doi: 10.1016/j.gee.2024.07.003
Citation: Amalia M. Grigoras, Federica Valentini, Loredana Latterini, Luigi Vaccaro. Heterogeneous iron-based catalysts for a sustainable photoinduced nitrogen fixation. Green Energy&Environment, 2025, 10(4): 733-755. doi: 10.1016/j.gee.2024.07.003

Heterogeneous iron-based catalysts for a sustainable photoinduced nitrogen fixation

doi: 10.1016/j.gee.2024.07.003
  • Ammonia is nowadays one of the most important commodities chemicals intensively produced at about 175 million tons per year, contributing to 1.8% of the global energy demand. The constantly increasing NH3 demand also paralleleds by the high CO2 emissions associated with its production. Therefore, decarbonizing NH3 synthesis is one of the most urgent contemporary challenges. Taking inspiration from Nature, solar-driven nitrogen fixation under mild conditions is one of the most promising yet challenging alternatives to classic methods. In this review, we focused our attention on the photocatalytic methods for the synthesis of ammonia; in particular, we concentrated on stable and recyclable heterogeneous Fe-based photocatalysts for producing NH3. Indeed, recoverable and widely abundant and low-cost iron catalysts may represent a very promising tool for future sustainable access to this largely desired chemical target. After an overview of the pioneering works on Fe-driven nitrogen photofixation, the recent strategies on the use of Fe are herein reported. Compared with pristine photocatalysts, adding Fe as dopant or composite and heterojunction highly enhances the photocatalytic performances, opening the way to sustainable and low-cost nitrogen production.

     

  • loading
  • [1]
    V. Smil, Nature 400 (1999) 415-415.
    [2]
    J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci. 1 (2008) 636-639.
    [3]
    A. Braun, D. K. Bora, L. Lauterbach, E. Lettau, H. Wang, S. P. Cramer, F. Yang, J. Guo, Catal. Today 186 (2022) 186-196.
    [4]
    X. Zhang, E. A. Davidson, D. L. Mauzerall, T. D. Searchinger, P. Dumas, Y. Shen, Nature 528 (2015) 51-59.
    [5]
    B. M. Comer, P. Fuentes, C. O. Dimkpa, Y. H. Liu, C. A. Fernandez, P. Arora, M. Realff, U. Singh, M. C. Hatzell, A. J. Medford Joule 3 (2019) 1578-1605.
    [6]
    S. Sun, Q. Jiang, D. Zhao, T. Cao, H. Sha, C. Zhang, H. Song, Z. Da, Renew. Sustain. Energy Rev. 169 (2022) 112918.
    [7]
    Z. Wan, Y. Tao, J. Shao, Y. Zhang, H. You, Energy Convers. Manag. 228 (2021) 113729.
    [8]
    H. Song, S. Luo, H. Huang, B. Deng, J. Ye, ACS Energy Lett. 7 (2022) 1043-1065.
    [9]
    E. Gianotti, M. Taillades-Jacquin, J. Roziere, D. J. Jones, ACS Catal. 8 (2018) 4660- 4680.
    [10]
    M. Niermann, A. Beckendorff, M. Kaltschmitt, K. Bonhoff, Int. J. Hydrogen Energy 44 (2019) 6631-6654.
    [11]
    M. Niermann, S. Timmerberg, S. Drunert, M. Kaltschmitt, Renew. Sust. Energy Rev. 135 (2021) 110171.
    [12]
    F. Ferlin, F. Valentini, A. Marrocchi, L. Vaccaro, ACS Sustain. Chem. Eng. 9 (2021) 9604-9624.
    [13]
    F. Valentini, A. Marrocchi, L. Vaccaro, Adv. Energy Mater. 12 (2022) 2103362.
    [14]
    M. Aziz, A. T. Wijayanta, A. B. D. Nandiyanto, Energies 13 (2020) 3062.
    [15]
    J. W. Makepeace, T. He, C. Weidenthaler, T. R. Jensen, F. Chang, T. Vegge, P. Ngene, Y. Kojima, P. E. de Jongh, P. Chen, W. I. F. David, Int. J. Hydrogen Energy 44 (2019) 7746-7767.
    [16]
    J. Andersson, S. Gronkvist, Int. J. Hydrogen Energy 44 (2019) 11901-11919.
    [17]
    S. Gubbi, R. Cole, B. Emerson, D. Noble, R. Steele, W. Sun, T. Lieuwen, ACS Energy Lett. 8 (2023) 4421-4426.
    [18]
    B. W. Keyser, Ann. Sci. 47 (1990) 213-260.
    [19]
    C.-L. Berthollet, Mem Acad Sci Paris (2022) 316.
    [20]
    R. Schlogl, In Handbook of Heterogeneous Catalysis, John Wiley & Sons, Ltd, (2008), pp. 2501-2575.
    [21]
    F. Haber, Z. Elektrochem. 16 (1910) 244.
    [22]
    F. Haber, R. Le Rossignol, Z. Fur Elektrochem. Angew. Phys. Chem. 19 (1913) 53.
    [23]
    A. S. Travis, Nitrogen Capture: The Growth of an International Industry (1900-1940), Springer US, Boston, MA, 2018.
    [24]
    M. Appl, The Haber-Bosch Heritage: The Ammonia Production Technology, 50th Anniversary of the IFA Technical Conference, Sevilla, Spain, 25-26 September 1997, 1997.
    [25]
    M. Appl, In Ammonia, 2. Production Processe, Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim, Germany, 2011.
    [26]
    A. Mittasch, Geschichte der Ammoniaksynthese, Verlag Chemie, 1951.
    [27]
    A. Mittasch, Frankenburg, W. In Advances in Catalysis (Eds.: Frankenburg, W. G.; Komarewsky, V. I.; Rideal, E. K.), Academic Press, 1950, pp. 81-104.
    [28]
    G. Ertl, Angew. Chem., Int. Ed. 47 (2008) 3524-3535.
    [29]
    J. Brightling, Johnson Matthey Technol. Rev. 62 (2018) 32.
    [30]
    C. Agrafiotis, H. von Storch, M. Roeb, C. Sattler, Renew. Sust. Energy Rev. 29 (2014) 656-682.
    [31]
    A. de Pee, D. Pinner, O. Roelofsen, K. Somers, E. Speelman, M. Witteveen, Decarbonization of Industrial Sectors: The Next Frontier; McKinsey & Company: Amsterdam, Netherlands, 2018.
    [32]
    D. R. MacFarlane, P. V. Cherepanov, J. Choi, B. H. R. Suryanto, R. Y. Hodgetts, J. M. Bakker, F. M. Ferrero Vallana, A. N. Simonov, Joule 4 (2020) 1186.
    [33]
    B. David, Ammonia: Zero-Carbon Fertiliser, Fuel and Energy Store, Policy Briefing. The Royal Society. February 2020. https://royalsociety.org/-/media/policy/projects/green-ammonia/green-ammonia-policy-briefing.pdf Accessed: 17-February-2023.
    [34]
    S. Wu, N. Salmon, M. M.-J. Li, R. Banares-Alcantara, S. C. E. Tsang, ACS Energy Lett. 7 (2022) 1021-1033.
    [35]
    B. Lee, L. R. Winter, H. Lee, D. Lim, H. Lim, M. Elimelech, ACS Energy Lett. 7 (2022) 3032-3038.
    [36]
    S.-L. Meng, X.-B. Li, C.-H. Tung, L.-Z. Wu, Chem 7 (2021) 1431-1450.
    [37]
    M. J. Chalkley, M. W. Drover, J. C. Peters, Chem. Rev. 120 (2020) 5582-5636.
    [38]
    K. Tanifuji, Y. Ohki, Chem. Rev. 120 (2020) 5194-5251.
    [39]
    P. Peng, P. Chen, C. Schiappacasse, N. Zhou, E. Anderson, D. Chen, J. Liu, Y. Cheng, R. Hatzenbeller, M. Addy, Y. Zhang, Y. Liu, R. Ruan, J. Cleaner Prod. 177 (2018) 597-609.
    [40]
    B. S. Patil, Q. Wang, V. Hessel, J. Lang, Catal. Today 256 (2015) 49-66.
    [41]
    J. Hong, S. Prawer, A. B. Murphy, ACS Sustain. Chem. Eng. 6 (2018) 15-31.
    [42]
    P. Mehta, P. Barboun, D. B. Go, J. C. Hicks, W. F. Schneider, ACS Energy Lett. 4 (2019) 1115-1133.
    [43]
    M. L. Carreon, J. Phys. D Appl. Phys. 52 (2019) 483001.
    [44]
    L. Yu, Z. Mo, X. Zhu, J. Deng, F. Xu, Y. Song, Y. She, H. Li, H. Xu, Green Energy Environ. 6 (2021) 538-545.
    [45]
    Y. X. Wei, W. J. Jiang, Y. Liu, X. J. Bai, D. Hao, B. J. Ni, Nanoscale 14 (2022) 2990-2997.
    [46]
    D. L. T. Nguyen, M. A. Tekalgne, T. H. N. Nguyen, M. T. N. Dinh, S. S. Sana, A. N. Grace, M. Shokouhimehr, D. V. N. Vo, C. K. Cheng, C. C. Nguyen, S. Y. Kim, Q. V. Le, J. Environ. Chem. Eng. 9 (2021) 104997.
    [47]
    R. Huang, X. Li, W. Gao, X. Zhang, S. Liang, M. Luo, RSC Adv. 11 (2021) 14844-14861.
    [48]
    L. Chen, W. Zhang, J. Wang, X. Li, Y. Li, X. Hu, L. Zhao, Y. Wu, Y. He, Green Energy Environ. 8 (2023) 283-295.
    [49]
    L. Chen, J. Wang, X. Li, J. Zhang, C. Zhao, X. Hu, H. Lin, L. Zhao, Y. Wu, Y. He, Green Energy Environ. 8 (2023) 1630-1643.
    [50]
    W. Guo, K. Zhang, Z. Liang, R. Zou, Q. Xu, Chem. Soc. Rev. 48 (2019) 5658-5716.
    [51]
    J. Yu, X. Yong, S. Lu, Energy Environ. Mater. (2024) e12587.
    [52]
    W. Li, S. Zhang, J. Ding, J. Liu, Z. Wang, H. Zhang, J. Ding, L. Chen, C. Liang, ACS Sustainable Chem. Eng. 11 (2023) 1168-1177.
    [53]
    K. Chu, Y. Luo, P. Shen, X. Li, Q. Li, Y. Guo, Adv. Energy Mater. 12 (2022) 2103022.
    [54]
    D. Guo, S. Wang, J. Xu, W. Zheng, D. Wang, J. Energy Chem. 65 (2022) 448-468.
    [55]
    H. Zhu, X. Ren, X. Yang, X. Liang, A. Liu, G. Wu, SusMat 2 (2022) 214-242.
    [56]
    G. Qing, R. Ghazfar, S. T. Jackowski, F. Habibzadeh, M. M. Ashtiani, C.-P. Chen, M. R., III Smith, T. W. Hamann, Chem. Rev. 120 (2020) 5437-5516.
    [57]
    M. Zhang, H. Yin, F. Jin, J. Liu, X. Ji, A. Du, W. Yang, Z. Liu, Green Energy Environ. 8 (2023) 1185-1194.
    [58]
    X. Wang, J. Bai, Y. Wang, X. Lu, Z. Zou, J. Huang, C. Xu, Green Energy Environ. 7 (2022) 755-762.
    [59]
    M. I. Ahmed, D. B. Hibbert, C. Zhao, Green Energy Environ. 8 (2023) 1567-1595.
    [60]
    G. Li, H. Jang, Z. Li, J. Wang, X. Ji, M. G. Kim, X. Liu, J. Cho, Green Energy Environ. 7 (2022) 672-679.
    [61]
    H. Liu, X. Wu, Y. Geng, X. Li, J. Xu, Green Energy Environ. 9 (2022) 545-555.
    [62]
    Y. Li, H. Wang, B. Chang, Y. Guo, Z. Li, S. H. Talib, Z. Lu, J. Wang, Green Energy Environ. 8 (2023) 1174-1184.
    [63]
    Q. Zhou, F. Gong, Y. Xie, R. Xiao, Green Energy Environ. 8 (2023) 1753-1763.
    [64]
    R. Shi, X. Zhang, G. I. Waterhouse, Y. Zhao, T. Zhang, Adv. Energy Mater. 10 (2020) 2000659.
    [65]
    J. Zheng, L. Jiang, Y. Lyu, S. P. Jiang, S. Wang, Energy Environ. Mater. 5 (2022) 452-457.
    [66]
    A. R. Singh, B. A. Rohr, J. A. Schwalbe, M. Cargnello, K. Chan, T. F. Jaramillo, I. Chorkendorff, J. K. Noerskov, ACS Catal. 7 (2017) 706-709.
    [67]
    N. Lazouski, A. Limaye, A. Bose, M. L. Gala, K. Manthiram, D. S. Mallapragada, ACS Energy Lett. 7 (2022) 2627-2633.
    [68]
    C. J. M. van der Ham, M. T. M. Koper, D. G. H. Hetterscheid, Chem. Soc. Rev. 43 (2014) 5183-5191.
    [69]
    Y. Huang, N. Zhang, Z. Wu, X. Xie, J. Mater. Chem. A 8 (2020) 4978-4995.
    [70]
    L. C. Seefeldt, B. M. Hoffman, D. R. Dean, Annu. Rev. Biochem. 78 (2009) 701-722.
    [71]
    D. Lukoyanov, S. A. Dikanov, Z.-Y. Yang, B. M. Barney, R. I. Samoilova, K. V. Narasimhulu, D. R. Dean, L. C. Seefeldt, B. M. Hoffman, J. Am. Chem. Soc. 133 (2011) 11655.
    [72]
    G. N. Schrauzer, T. D. Guth, J. Am. Chem. Soc. 99 (1977) 7189-7193.
    [73]
    R. I. Bickley, V. Vishwanathan, Nature 280 (1979) 306-308.
    [74]
    A. J. Medford, M. C. Hatzell, ACS Catal. 7 (2017) 2624-2643.
    [75]
    L. Wang, W. Wu, K. Liang, X. Yu, Energy & Fuels 36 (2022) 11278-11291.
    [76]
    S. Lin, X. Zhang, L. Chen, Q. Zhang, L. Ma, J. Liu, Green Chem. 24 (2022) 9003-9026.
    [77]
    Y. Xia, Y. Xu, X. Yu, K. Chang, H. Gong, X. Fan, X. Meng, X. Huang, T. Wang, J. He, J. Mater. Chem. A 10 (2022) 17377.
    [78]
    W. P. Utomo, M. K. H. Leung, Z. Yin, H. Wu, Y. H. Ng, Adv. Funct. Mater. 32 (2022) 2106713.
    [79]
    X. Hui, L. Wang, Z. Yao, L. Hao, Z. Sun, Front. Chem. 10 (2022) 978078.
    [80]
    Y. Sun, Y. Ahmadi, K.-H. Kim, J. Lee, Renew. Sust. Energy Rev. 170 (2022) 112967.
    [81]
    H. Abdullah, Ed., Photocatalytic Activities for Environmental Remediation and Energy Conversion, Springer Nature, Singapore, 2023.
    [82]
    H. Shen, M. Yang, L. Hao, J. Wang, J. Strunk, Z. Sun, Nano Res. 15 (2022) 2773-2809.
    [83]
    H. Li, C. Mao, H. Shang, Z. Yang, Z. Ai, L. Zhang, Nanoscale 10 (2018) 15429-15435.
    [84]
    R. Shi, Y. Zhao, G. I. N. Waterhouse, S. Zhang, T. Zhang, ACS Catal. 9 (2019) 9739-9750.
    [85]
    B. Puertolas, M. Comesana-Hermo, L. V. Besteiro, M. Vazquez-Gonzalez, M. A. Correa-Duarte, Adv. Energy Mater. 12 (2022) 2103909.
    [86]
    H. Bai, S. H. Lam, J. Yang, X. Cheng, S. Li, R. Jiang, L. Shao, J. Wang, Adv. Mater. 34 (2022) 2104226.
    [87]
    W. Guo, Y. Liu, Y. Sun, Y. Wang, W. Qin, B. Zhao, Z. Liang, L. Jiang, Adv. Funct. Mater. 31 (2021) 2100768.
    [88]
    L. Zhang, S. Hou, T. Wang, S. Liu, X. Gao, C. Wang, G. Wang, Small 18 (2022) 2202252.
    [89]
    G. Liu, Z. Tang, X. Gu, N. Li, H. Lv, Y. Huang, Y. Zeng, M. Yuan, Q. Meng, Y. Zhou, C. Wang, Appl. Catal., B 317 (2022) 121752.
    [90]
    P. Praus, ChemistrySelect 8 (2023) e202204511.
    [91]
    J. Li, X. Guo, L. Gan, Z.-F. Huang, L. Pan, C. Shi, X. Zhang, G. Yang, J.-J. Zou, ACS Appl. Energy Mater. 5 (2022) 9241-9265.
    [92]
    K. Hu, Z. Huang, L. Zeng, Z. Zhang, L. Mei, Z. Chai, W. Shi, Eur. J. Inorg. Chem. 2022 (2022) e202100748.
    [93]
    Y.-H. Liu, C. A. Fernandez, S. A. Varanasi, N. N. Bui, L. Song, M. C. Hatzell, ACS Energy Lett. 7 (2022) 24-29.
    [94]
    COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC and SOCIAL COMMITTEE and the COMMITTEE of the REGIONS Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability, 2020.
    [95]
    Y. Nishibayashi, Transition Metal-Dinitrogen Complexes: Preparation and Reactivity, John Wiley & Sons, 2019.
    [96]
    J. Kfoury, Z. Benedek, T. Szilvasi, J. Olah, Organometallics 41 (2022) 1134-1146.
    [97]
    M. M. Khader, N. N. Lichtin, G. H. Vurens, M. Salmeron, G. A. Somorjai, Langmuir 3 (1987) 303-304.
    [98]
    Y. L. Pang, S. Lim, H. C. Ong, W. T. Chong, Ceram. Int. 42 (2016) 9-34.
    [99]
    K. Tennakone, J. M. S. Bandara, C. T. K. Thaminimulla, W. D. W. Jayatilake, U. S. Ketipearachchi, O. A. Ileperuma, M. K. Priyadarshana, Langmuir 7 (1991) 2166-2168.
    [100]
    H. Miyama, N. Fujii, Y. Nagae, Chem. Phys. Lett. 74 (1980) 523-524.
    [101]
    E. Endoh, J. K. Leland, A. J. Bard, J. Phys. Chem. 90 (1986) 6223-6226.
    [102]
    K. Tennakone, C. A. N. Fernando, S. Wickramanayake, M. W. P. Damayanthi, L. H. K. Silva, W. Wijeratne, O. A. Illeperuma, S. Punchihewa, Sol. Energy Mater. 17 (1988) 47-53.
    [103]
    M. Lashgari, P. Zeinalkhani, Appl. Catal., A 529 (2017) 91- 97.
    [104]
    P. P. Radford, C. G. Francis, J. Chem. Soc. Chem. Commun. (1983) 1520-1521.
    [105]
    O. A. Ileperuma, W. C. B. Kiridena, W. D. D. Dissanayake, J. Photochem. Photobiol. Chem. 59 (1991) 191.
    [106]
    O. Rusina, A. Eremenko, G. Frank, H. P. Strunk, H. Kisch, Angew. Chem., Int. Ed. 40 (2001) 3993-3995.
    [107]
    W. R. Zhao, J. Zhang, X. Zhu, M. Zhang, J. Tang, M. Tan, Y. Wang, Appl. Catal., B 144 (2014) 468-477.
    [108]
    Y. Liu, Z. Yu, S. Guo, L. Yao, R. Sun, X. Huang, W. Zhao, New J. Chem. 44 (2020) 19924-19932.
    [109]
    J. Liu, Y. Zhang, L. Lu, G. Wu, W. Chen, Chem. Commun. 48 (2012) 8826-8828.
    [110]
    J. Yang, H. Bai, Y. Guo, H. Zhang, R. Jiang, B. Yang, J. Wang, J. C. Yu, Angew. Chem., Int. Ed. 60 (2021) 927-936.
    [111]
    H. Yang, G. Ren, Z. Li, Z. Zhang, X. Meng, Appl. Catal., B: Environment and Energy 347 (2024) 123795.
    [112]
    B. Wang, H. Cai, S. Shen, Small Methods 3 (2019) 1800447.
    [113]
    S. Wu, Z. Chen, W. Yue, S. Mine, T. Toyao, M. Matsuoka, X. Xi, L. Wang, J. Zhang, ACS Catal. 11 (2021) 4362-4371.
    [114]
    P. Li, S. Gao, Q. Liu, P. Ding, Y. Wu, C. Wang, S. Yu, W. Liu, Q. Wang, S. Chen, Adv. Energy Sustain. Res. 2 (2021) 2000097.
    [115]
    A. Kumar, P. Singh, A. A. P. Khan, Q. V. Le, V.-H. Nguyen, S. Thakur, P. Raizada, Chem. Eng. J. 439 (2022) 135563.
    [116]
    X. Feng, H. Zou, R. Zheng, W. Wei, R. Wang, W. Zou, G. Lim, J. Hong, L. Duan, H. Chen, Nano Lett. 22 (2022) 1656-1664.
    [117]
    X. Hu, R.-t. Guo, X. Chen, Z.-x. Bi, J. Wang, W.-g Pan, J. Environ. Chem. Eng. 10 (2022) 108582.
    [118]
    Y. Li, J. Chen, S. Chen, X. Liao, T. Zhao, F. Cheng, H. Wang, ACS Energy Lett. 7 (2022) 1454-1461.
    [119]
    M. N. Gordon, K. Chatterjee, N. Christudas Beena, S. E. Skrabalak, ACS Sustain. Chem. Eng. 10 (2022) 15622-15641.
    [120]
    S. Shaheen, I. Sadiq, S. A. Ali, T. Ahmad, Catalysts 13 (2023) 295.
    [121]
    Y. Ji, M. She, X. Bai, E. Liu, W. Xue, Z. Zhang, K. Wan, P. Liu, S. Zhang, J. Li, Adv. Funct. Mater. 32 (2023) 2201721.
    [122]
    N. Zhang, L. Li, Q. Shao, T. Zhu, X. Huang, X. Xiao, ACS Appl. Energy Mater. 2 (2019) 8394-8398.
    [123]
    Q. Meng, C. Lv, J. Sun, W. Hong, W. Xing, L. Qiang, G. Chen, X. Jin, Appl. Catal., B 256 (2019) 117781.
    [124]
    Y. Liu, Z. Hu, J. C. Yu, Chem. Mater. 32 (2020) 1488-1494.
    [125]
    X. L. Song, L. Chen, L. J. Gao, J. T. Ren, Z. Y Yuan, Green Energy Environ. 9 (2022) 166-197.
    [126]
    J. Wang, S. Wang, Coord. Chem. Rev. 453 (2022) 214338.
    [127]
    Y. Li, Z. Ren, Z. He, P. Ouyang, Y. Duan, W. Zhang, K. Lv, F. Dong, Green Energy Environ. 9 (2023) 623-658.
    [128]
    H. Mou, J. Wang, D. Zhang, D. Yu, W. Chen, D. Wang, T. Mu, J. Mater. Chem. A 7 (2019) 5719-5725.
    [129]
    S. Liu, S. Wang, Y. Jiang, Z. Zhao, G. Jiang, Z. Sun, Chem. Eng. J. 373 (2019) 572-579.
    [130]
    X. Rong, S. Zhang, J. Rong, J. Wei, X. Qiu, Z. Wu, Mater. Res. Bull. 145 (2022) 111523.
    [131]
    S. Hu, X. Chen, Q. Li, F. Li, Z. Fan, H. Wang, Y. Wang, B. Zheng, G. Wu, Appl. Catal., B 201 (2017) 58-69.
    [132]
    H. Zeng, L. Liu, D. Zhang, Y. Wang, Z. Li, C. Liu, L. Zhang, X. Cui, Mater. Chem. Phys. 258 (2021) 123830.
    [133]
    J. Zander, J. Timm, M. Weiss, R. Marschall, Adv. Energy Mater. 12 (2022) 2202403.
    [134]
    Z. Mo, K. Xu, L. Yu, T. Huang, Y. Song, J. Yuan, C. Ding, Y. Lei, H. Li, H. Xu, Int. J. Energy Res. 46 (2022) 13453.
    [135]
    C. Yao, R. Wang, Z. Wang, H. Lei, X. Dong, C. He, J. Mater. Chem. A 7 (2019) 27547-27559.
    [136]
    G. Dong, C. Huang, F. Y. Chen, X. Q. Liu, Z. Li, X. L. Su, T. Zeng, Y-X. Chen, Y.-H. Chen, Y. Rare Met. (2024) https://doi.org/10.1007/s12598-023-02540-5.
    [137]
    T. Hou, H. Peng, Y. Xin, S. Wang, W. Zhu, L. Chen, Y. Yao, W. Zhang, S. Liang, L. Wang, ACS Catal. 10 (2020) 5502-5510.
    [138]
    N. Gao, H. Zeng, X. Wang, Y. Zhang, S. Zhang, R. Cui, M. Zhang, L. Mao, Angew. Chem., Int. Ed. 61 (2022) e202204485.
    [139]
    C. Huang, Y. Zhao, Y. Li, Adv. Mater. 31 (2019) 1904885.
    [140]
    H. Yu, Y. Xue, Y. Li, Adv. Mater. 31 (2019) 1803101.
    [141]
    N. Wang, J. He, K. Wang, Y. Zhao, T. Jiu, C. Huang, Y. Li, Adv. Mater. 31 (2019) 1803202.
    [142]
    Y. Fang, Y. Xue, L. Hui, H. Yu, Y. Li, Angew. Chem., Int. Ed. Engl. 60 (2021) 3170-3174.
    [143]
    K. Li, C. Sun, Z. Q. Chen, H. X. Qu, H. F. Xie, Q. Zhong, Chem. Eng. J. 429 (2022) 132440.
    [144]
    Q. Ding, X. Zou, J. Ke, Y. Dong, Y. Cui, H. Ma, J. Colloid Interface Sci. 649 (2023) 148-158.
    [145]
    S. Sharma, V. Dutta, P. Raizada, A. Hosseini-Bandegharaei, V. Thakur, V.-H. Nguyen, Q. VanLe, P. Singh, J. Environ. Chem. Eng. 9 (2021) 105812.
    [146]
    V. Dutta, S. Sharma, P. Raizada, A. Hosseini-Bandegharaei, V. Kumar Gupta, P. Singh, J. Saudi Chem. Soc. 23 (2019) 1119-1136.
    [147]
    D. Yang, X. Cai, J. Zhang, B. Ding, Y. Zhao, X. Gu, L. Mao, Y. Qiang, J. Alloys Compd. 869 (2021) 158809.
    [148]
    S. Zhang, X. Rong, T. Sun, P. Gao, J. Liu, X. Qiu, X. Zhou, Z. Wu, J. Porous Mater. 29 (2022) 1431-1440.
    [149]
    Q. Zheng, Y. Xu, Y. Wan, J. Wu, X. Hu, X. Yao, J. Nanoparticle Res. 22 (2020) 301.
    [150]
    S. L. Foster, S. I. P. Bakovic, R. D. Duda, S. Maheshwari, R. D. Milton, S. D. Minteer, M. J. Janik, J. N. Renner, L. F. Greenlee, Nat. Catal. 1 (2018) 490-500.
    [151]
    K. A. Brown, D. F. Harris, M. B. Wilker, A. Rasmussen, N. Khadka, H. Hamby, S. Keable, G. Dukovic, J. W. Peters, L. C. Seefeldt, P. W. King, Science 352 (2016) 448-450.
    [152]
    J. Luo, X. Bai, Q. Li, X. Yu, C. Li, Z. Wang, W. Wu, Y. Liang, Z. Zhao, H. Liu, Nano Energy 66 (2019) 104187.
    [153]
    H. Li, S. Gu, Z. Sun, F. Guo, Y. Xie, B. Tao, X. He, W. Zhang, H. Chang, J. Mater. Chem. A 8 (2020) 13038-13048.
    [154]
    H. Li, H. Deng, S. Gu, C. Li, B. Tao, S. Chen, X. He, G. Wang, W. Zhang, H. Chang, J. Colloid Interface Sci. 607 (2022) 1625.
    [155]
    J. Zheng, L. Lu, K. Lebedev, S. Wu, P. Zhao, I. J. McPherson, T.-S. Wu, R. Kato, Y. Li, P.-L. Ho, G. Li, L. Bai, J. Sun, D. Prabhakaran, R. A. Taylor, Y.-L. Soo, K. Suenaga, S. C. E. Tsang, Chem Catal. 1 (2021) 162-182.
    [156]
    S. Thangudu, C.-H. Wu, C.-H. Lee, K. C. Hwang, ACS Sustainable Chem. Eng. 9 (2021) 8748-8758.
    [157]
    Q. Su, W. Wang, Z. Zhang, J. Duan, J. Electrochem. Soc.168 (2021) 116506.
    [158]
    S. A. Younis, E. E. Kwon, M. Qasim, K.-H. Kim, T. Kim, D. Kukkar, X. Dou, I. Ali, Prog. Energy Combust. Sci. 81 (2020) 100870.
    [159]
    A. Dhakshinamoorthy, A. M. Asiri, H. Garcia, Angew. Chem., Int. Ed. 55 (2016) 5414-5445.
    [160]
    T. Qiu, Z. Liang, W. Guo, H. Tabassum, S. Gao, R. Zou, ACS Energy Lett. 5 (2020) 520-532.
    [161]
    G. Li, F. Li, J. Liu, C. Fan, J. Solid State Chem. 285 (2020) 121245.
    [162]
    Z. Zhang, F. Li, G. Li, R. Li, Y. Wang, Y. Wang, X. Zhang, L. Zhang, F. Li, J. Liu, C. Fan J. Solid State Chem. 310 (2022) 123041.
    [163]
    L. Guo, F. Li, J. Liu, R. Li, Z. Yu, Q. Xi, L. Zhang, Y. Li, C. Fan, J. Solid State Chem. 316 (2022) 123610.
    [164]
    Z. Zhao, D. Yang, H. Ren, K. An, Y. Chen, Z. Zhou, W. Wang, Z. Jiang, Chem. Eng. J. 400 (2020) 125929.
    [165]
    Z. Zhao, H. Ren, D. Yang, Y. Han, J. Shi, K. An, Y. Chen, Y. Shi, W. Wang, J. Tan, X. Xin, Y. Zhang, Z. Jiang, ACS Catal. 11 (2021) 9986-9995.
    [166]
    Z. Zhao, H. Ren, Y. Shi, J. Tan, X. Xin, D. Yang, Z. Jiang, Chem. Eng. J. 443 (2022) 136559.
    [167]
    S. Shang, W. Xiong, C. Yang, B. Johannessen, R. Liu, H. Y. Hsu, Q. Gu, M. K. H. Leung, J. Shang, ACS Nano 15 (2021) 9670-9678.
    [168]
    L.-C. Chen, Y.-T. Chen, X.-W. Tu, S.-X. Zhu, C. Sun, L.-P. Zhang, W.-H. Han, X.-F. Duan, Q. Sun, H. Zheng, J. Colloid Interface Sci. 633 (2023) 703-711.
    [169]
    N. Ojha, S. Kumar, Appl. Catal., B 292 (2021) 120166.
    [170]
    A. M. O. Mohamed, Y. Bicer, Appl. Surf. Sci. 583 (2022) 152376.
    [171]
    S. Sultana, S. Mansingh, K. M. Parida, J. Mater. Chem. A 7 (2019) 9145-9153.
    [172]
    X. Ye, X. Li, X. Chu, Z. Wang, S. Zuo, T. Wang, C. Yao, J. Alloys Compd. 871 (2021) 159542.
    [173]
    K. Pournemati, A. Habibi-Yangjeh, A. Khataee, ACS Appl. Nano Mater. 7 (2024) 2200-2213.
    [174]
    H. Li, M. Xia, B. Chong, H. Xiao, B. Zhang, B. Lin, B. Yang, G. Yang, ACS Catal. 12 (2022) 10361-10372.
    [175]
    T. Hou, L. Chen, Y. Xin, W. Zhu, C. Zhang, W. Zhang, S. Liang, L. Wang, ACS Energy Lett. 5 (2020) 2444-2451.
    [176]
    H. Iriawan, S. Z. Andersen, X. Zhang, B. M. Comer, J. Barrio, P. Chen, A. J. Medford, I. E. L. Stephens, I. Chorkendorff, Y. Shao-Horn, Nat. Rev. Methods Prim. 1 (2021) 56.
    [177]
    Y. Zhao, R. Shi, X. Bian, C. Zhou, Y. Zhao, S. Zhang, F. Wu, G. I. N. Waterhouse, L. Wu, C. Tung, T. Zhang, Adv. Sci. 6 (2019)1802109.
    [178]
    H. Ali, M. Masar, A. C. Guler, M. Urbanek, M. Machovsky, I. Kuritka, Nanoscale Adv. 3 (2021) 6358-6372.
    [179]
    A. P. Varghese, B. Neppolian, S. K. Lakhera, Ind. Eng. Chem. Res. 62 (2023) 12530-12537.
    [180]
    M. Kolen, W. A. Smith, F. M. Mulder, ACS Omega 6 (2021) 5698-5704.
    [181]
    R. Y. Hodgetts, A. S. Kiryutin, P. Nichols, H.-L. Du, J. M. Bakker, D. R. MacFarlane, A. N. Simonov, ACS Energy Lett. 5 (2020) 736-7417.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (138) PDF downloads(3) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return