Volume 8 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Yang Yang, Chaoyue Zhao, Xianliang Qiao, Qingxin Guan, Wei Li. Regulating the coordination environment of Ru single-atom catalysts and unravelling the reaction path of acetylene hydrochlorination. Green Energy&Environment, 2023, 8(4): 1141-1153. doi: 10.1016/j.gee.2022.01.006
Citation: Yang Yang, Chaoyue Zhao, Xianliang Qiao, Qingxin Guan, Wei Li. Regulating the coordination environment of Ru single-atom catalysts and unravelling the reaction path of acetylene hydrochlorination. Green Energy&Environment, 2023, 8(4): 1141-1153. doi: 10.1016/j.gee.2022.01.006

Regulating the coordination environment of Ru single-atom catalysts and unravelling the reaction path of acetylene hydrochlorination

doi: 10.1016/j.gee.2022.01.006
  • In this work, DFT calculations were used firstly to simulate the nitrogen coordinated metal single-atom catalysts (M-Nx SACs, M = Hg, Cu, Au, and Ru) to predict their catalytic activities in acetylene hydrochlorination. The DFT results showed that Ru-Nx SACs had the best catalytic performance among the four catalysts, and Ru-Nx SACs could effectively inhibit the reduction of ruthenium cation. To verify the DFT results, Ru-Nx SACs were fabricated by pyrolyzing MOFs in-situ spatially confined metal precursors. The N coordination environment could be controlled by changing the pyrolysis temperature. Catalytic performance tests indicated that low N coordination number (Ru–N2, Ru–N3) exhibited excellent catalytic activity and stability compared to RuCl3 catalyst. DFT calculations further revealed that Ru–N2 and Ru–N3 had a tendency to activate HCl at the first step of reaction, whereas Ru–N4 tended to activate C2H2. These findings will serve as a reference for the design and control of metal active sites.

     

  • loading
  • [1]
    Y. Li, Green Energy Environ., 5 (2020), pp. 4-5.
    [2]
    G. Liu, Y. Huang, H. Lv, H. Wang, C. Wang, Appl. Catal., B, 284 (2021), p. 119683.
    [3]
    R. Ciriminna, M. Pagliaro, R. Luque, Green Energy Environ., 6 (2021), pp. 161-166.
    [4]
    D. Liu, D. Chen, J. Yang, Green Energy Environ., 4 (2019), pp. 208-209.
    [5]
    C.H. Choi, M. Kim, H.C. Kwon, S.J. Cho, S. Yun, H.T. Kim, K. Mayrhofer, H. Kim, M. Choi, Nat. Commun., 7 (2016), p. 10922.
    [6]
    J. Li, W. Xia, T. Wang, L. Zheng, Y. Lai, J. Pan, C. Jiang, L. Song, M. Wang, H. Zhang, N. Chen, G. Chen, J. He, Chem. Eur J., 26 (2020), pp. 4070-4079.
    [7]
    M. Zhu, Q. Wang, K. Chen, Y. Wang, C. Huang, H. Dai, F. Yu, L. Kang, B. Dai, ACS Catal., 5 (2015), pp. 5306-5316.
    [8]
    C.J. Davies, P.J. Miedziak, G.L. Brett, G.J. Hutchings, Chin. J. Catal., 37 (2016), pp. 1600-1607.
    [9]
    X. Li, P. Li, X. Pan, H. Ma, X. Bao, Appl. Catal., B, 210 (2017), pp. 116-120.
    [10]
    J. G., Hutchings, and, T. D., Grady, Appl. Catal., 16 (1985), pp. 411-415.
    [11]
    P. Liu, C. Liu, T. Hu, J. Shi, J. Peng, Chem. Eng. J., 408 (2020), p. 127355.
    [12]
    L. Ye, X. Duan, S. Wu, T.S. Wu, Y. Zhao, A.W. Robertson, H.L. Chou, J. Zheng, T. Ayvali, S. Day, Nat. Commun., 10 (2019), p. 914.
    [13]
    B. Wang, Y. Yue, S. Wang, S. Shao, Z. Chen, X. Fang, X. Pang, Z. Pan, J. Zhao, X. Li, Green Energy Environ., 6 (2021), pp. 9-14.
    [14]
    X. Li, M. Zhu, B. Dai, Appl. Catal., B, 142-143 (2013), pp. 234-240.
    [15]
    M. Zhu, L. Kang, Y. Su, S. Zhang, B. Dai, Can. J. Chem., 91 (2013), pp. 120-125.
    [16]
    G. Lan, Y. Yang, X. Wang, W. Han, H. Tang, H. Liu, Y. Li, Microporous Mesoporous Mater., 264 (2018), pp. 248-253.
    [17]
    L. Hang, B. Wu, J. Wang, F. Wang, X. Zhang, W. Gang, H. Li, Chin. J. Catal., 39 (2018), pp. 1770-1781.
    [18]
    J. Zhang, W. Sheng, C. Guo, W. Li, RSC Adv., 3 (2013), p. 21062.
    [19]
    L. Hou, J. Zhang, Y. Pu, W. Li, RSC Adv., 6 (2016), pp. 18026-18032.
    [20]
    S. Shang, W. Zhao, Y. Wang, X. Li, J. Zhang, Y. Han, W. Li, ACS Catal., 7 (2017), pp. 3510-3520.
    [21]
    X. Sun, S.R. Dawson, T.E. Parmentier, G. Malta, T.E. Davies, Q. He, L. Lu, D.J. Morgan, N. Carthey, P. Johnston, S.A. Kondrat, S.J. Freakley, C.J. Kiely, G.J. Hutchings, Nat. Chem., 12 (2020), pp. 560-567.
    [22]
    Q. Zhang, X. Liu, J. Luo, C. Ma, C. Xu, New J. Chem., 45 (2021), pp. 1712-1720.
    [23]
    C. Zhao, X. Zhang, Z. He, Q. Guan, W. Li, Inorg. Chem. Front., 7 (2020), pp. 3204-3216.
    [24]
    J. Li, H. Zhang, M. Cai, L. Li, J. Zhang, Appl. Catal. A-Gen., 592 (2020), p. 117431.
    [25]
    X. Wang, G. Lan, Z. Cheng, W. Han, H. Tang, H. Liu, Y. Li, Chin. J. Catal., 41 (2020), pp. 1683-1691.
    [26]
    J. Zhao, Y. Yu, X. Xu, S. Di, B. Wang, H. Xu, J. Ni, L.L. Guo, Z. Pan, X. Li, Appl. Catal., B, 206 (2017), pp. 175-183.
    [27]
    Z. Chen, Y. Chen, S. Chao, X. Dong, W. Chen, J. Luo, C. Liu, D. Wang, C. Chen, W. Li, J. Li, Y. Li, ACS Catal., 10 (2020), pp. 1865-1870.
    [28]
    S.K. Kaiser, E. Fako, G. Manzocchi, F. Krumeich, J. Perez-Ramirez, Nat. Catal., 3 (2020), pp. 376-385.
    [29]
    B. Wang, Y. Yue, C. Jin, J. Lu, X. Li, Appl. Catal., B, 272 (2020), p. 118944.
    [30]
    B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, Z. Tao, Nat. Chem., 3 (2011). pp. 634-641.
    [31]
    S.K. Kaiser, Z. Chen, D. Faust Akl, S. Mitchell, J. Perez-Ramirez, Chem. Rev., 120 (2020), pp. 11703-11809.
    [32]
    Z. Li, Y. Chen, S. Ji, Y. Tang, W. Chen, A. Li, J. Zhao, Y. Xiong, Y. Wu, Y. Gong, Nat. Chem., 12 (2020), pp. 764-772.
    [33]
    Y. Chen, S. Ji, W. Sun, W. Chen, J. Dong, J. Wen, Z. Jian, Z. Li, L. Zheng, C. Chen, J. Am. Chem. Soc., 140 (2018), pp. 7407-7410.
    [34]
    S. Mitchell, E. Vorobyeva, J. Perez-Ramirez, Angew. Chem. Int. Ed., 57 (2018), pp. 15316-15329.
    [35]
    B. Wang, Y. Yue, S. Wang, Z. Chen, L. Yu, S. Shao, G. Lan, Z. Pan, J. Zhao, X. Li, Chem. Commun., 56 (2020), pp. 10722-10725.
    [36]
    Y.-S. Lin, G.-D. Li, S.-P. Mao, J.-D. Chai, J. Chem. Theor. Comput., 9 (2013), pp. 263-272.
    [37]
    M. Dolg, H. Stoll, H. Preuss, J. Chem. Phys., 90 (1989), pp. 1730-1734.
    [38]
    K. Fukui, Acc. Chem. Res., 14 (1981), pp. 363-368.
    [39]
    Z. Li, Y. Chen, S. Ji, Y. Tang, W. Chen, A. Li, J. Zhao, Y. Xiong, Y. Wu, Y. Gong, T. Yao, W. Liu, L. Zheng, J. Dong, Y. Wang, Z. Zhuang, W. Xing, C.-T. He, C. Peng, W.-C. Cheong, Q. Li, M. Zhang, Z. Chen, N. Fu, X. Gao, W. Zhu, J. Wan, J. Zhang, L. Gu, S. Wei, P. Hu, J. Luo, J. Li, C. Chen, Q. Peng, X. Duan, Y. Huang, X.-M. Chen, D. Wang, Y. Li, Nat. Chem., 12 (2020), pp. 764-772.
    [40]
    S. Ma, Z. Han, K. Leng, X. Liu, Y. Wang, Y. Qu, J. Bai, Small., 16 (2020), p. 2070129.
    [41]
    Y. Ban, Z. Li, Y. Li, Y. Peng, H. Jin, W. Jiao, A. Guo, P. Wang, Q. Yang, C. Zhong, Angew. Chem., 127 (2015), pp. 15703-15707.
    [42]
    A. Di Santo, H. Osiry, E. Reguera, P. Albores, R.E. Carbonio, A. Ben Altabef, D.M. Gil, New J. Chem., 42 (2018), pp. 1347-1355.
    [43]
    S.K. Kaiser, R. Lin, F. Krumeich, O.V. Safonova, J. Perez-Ramirez, Angew. Chem. Int. Ed., 58 (2019), pp. 12297-12304.
    [44]
    Q. Lai, J. Zhu, Y. Zhao, Y. Liang, J. Chen, Small., 13 (2017), p. 1700740.
    [45]
    X. Wang, W. Chen, L. Zhang, T. Yao, W. Liu, Y. Lin, H. Ju, J. Dong, L. Zheng, W. Yan, X. Zheng, Z. Li, X. Wang, J. Yang, D. He, Y. Wang, Z. Deng, Y. Wu, Y. Li, J. Am. Chem. Soc., 139 (2017), pp. 9419-9422.
    [46]
    L. Cao, Q. Luo, J. Chen, L. Wang, Y. Lin, H. Wang, X. Liu, X. Shen, W. Zhang, W. Liu, Z. Qi, Z. Jiang, J. Yang, T. Yao, Nat. Commun., 10 (2019), p. 4849.
    [47]
    M. Xiao, L. Gao, Y. Wang, X. Wang, J. Zhu, Z. Jin, C. Liu, H. Chen, G. Li, J. Ge, Q. He, Z. Wu, Z. Chen, W. Xing, J. Am. Chem. Soc., 141 (2019), pp. 19800-19806.
    [48]
    C. Zhang, J. Sha, H. Fei, M. Liu, S. Yazdi, J. Zhang, Q. Zhong, X. Zou, N. Zhao, H. Yu, Z. Jiang, E. Ringe, B.I. Yakobson, J. Dong, D. Chen, J.M. Tour, ACS Nano., 11 (2017), pp. 6930-6941.
    [49]
    C. Zhao, C. Xiong, X. Liu, M. Qiao, Z. Li, T. Yuan, J. Wang, Y. Qu, X. Wang, F. Zhou, Q. Xu, S. Wang, M. Chen, W. Wang, Y. Li, T. Yao, Y. Wu, Y. Li, Chem Commum., 55 (2019), pp. 2285-2288.
    [50]
    R. Lin, S.K. Kaiser, R. Hauert, J. Perez-Ramirez, ACS Catal., 8 (2018), pp. 1114-1121.
    [51]
    J. Zhao, T. Zhang, X. Di, J. Xu, S. Gu, Q. Zhang, J. Ni, X. Li, Catal. Sci. Technol., 5 (2015), pp. 4973-4984.
    [52]
    S. Chao, Q. Guan, W. Li, J. Catal., 330 (2015), pp. 273-279.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (90) PDF downloads(5) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return