Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Qiuzhun Chen, Dong Wang, Chuan Gao, Bin Wang, Shengli Niu, Gaiju Zhao, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Cerium-tungsten oxides supported on activated red mud for the selective catalytic reduction of NOx. Green Energy&Environment, 2023, 8(1): 173-182. doi: 10.1016/j.gee.2021.03.008
Citation: Qiuzhun Chen, Dong Wang, Chuan Gao, Bin Wang, Shengli Niu, Gaiju Zhao, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Cerium-tungsten oxides supported on activated red mud for the selective catalytic reduction of NOx. Green Energy&Environment, 2023, 8(1): 173-182. doi: 10.1016/j.gee.2021.03.008

Cerium-tungsten oxides supported on activated red mud for the selective catalytic reduction of NOx

doi: 10.1016/j.gee.2021.03.008
  • Activated red mud (RM) has been proved to be a promising base material for the selective catalysis reduction (SCR) of NOx. The inherent low reducibility and acidity limited its low-temperature activity. In this work, molybdenum oxide, tungsten oxide, and cerium oxide were used to reconfigure the redox sites and acid sites of red mud based catalyst. When activated red mud was reconfigured by cerium-tungsten oxide (Ce-W@RM), the NOx conversion kept above 90% at 219-480 ℃. The existence of Ce3+/Ce4+ redox electron pairs provided more surface adsorbed oxygen (Oα) and served as a redox cycle. Positive interactions between Ce, W species and Fe oxide in red mud occurred, which led to the formation of unsaturated chemical bond and promoted the activation of adsorbed NH3 species. WO3 and Ce2(WO4)3 (formed by solid-state reaction between Ce and W species) could provide more Brønsted acid sites (W-O modes of WO3, WO or W-O-W modes of Ce2(WO4)3). CeO2 species could provide more Lewis acid sites. The Langmuir-Hinshelwood (L-H) routes and Eley-Rideal (E-R) routes occurred in the low-temperature SCR reaction on the Ce-W@RM surface. NH4+ species on Brønsted acid sites, NH3 species on Lewis acid sites, bidentate nitrate and bridging nitrate species were key active intermediates species.

     

  • • Cerium-tungsten oxides could reconfigure the redox sites and acid sites of red mud based catalyst. • Cerium-tungsten supported red mud based catalyst kept above 90% NO conversion at 219–480 °C. • Abundant Ce3+ and unsaturated chemical bond improved the redox properties of catalyst. • Ce2(WO4)3 formed by solid–state reaction between Ce and W species promoted NH3 adsorption.
  • loading
  • [1]
    Z.-M. Liu, H. Su, B.-H. Chen, J.-H. Li, S.-I Woo, Chem. Eng. J. 299 (2016) 255-262]. Please check.
    [2]
    N. Husnain, E. Wang, S. Fareed, M. Tuoqeer Anwar, Catalysts 9 (2019) 1018
    [3]
    Z.-Q. Gong, S.-L. Niu, Y.-J. Zhang, C.-M. Lu, Mater. Res. Bull. 123 (2020) 110693
    [4]
    F.-D. Liu, W.-P. Shan, Z.-H. Lian, J.-J. Liu, H. He, Appl. Catal., B 230 (2018) 165-176
    [5]
    Z.-K. Lyu, S.-L. Niu, C.-M. Lu, G.-J. Zhao, Z.-Q. Gong, Y. Zhu, Fuel 267 (2020) 117147
    [6]
    H.-M. Wang, P. Ning, Y.-Q. Zhang, Y.-P. Ma, J.-F. Wang, L.-Y. Wang, Q.-L. Zhang, J. Hazard. Mater. 388 (2020) 121812
    [7]
    W. Zhao, S.-P. Dou, K. Zhang, L.-C. Wu, Q. Wang, D.-H. Shang, Q. Zhong, Chem. Eng. J. 364 (2019) 401-409
    [8]
    X.-S. Liu, H.-F. Chen, X.-D. Wu, L. Cao, P. Jiang, Q.-F. Yu, Y. Ma, Catal. Sci. Technol. 9 (2019), 3711-3720
    [9]
    Y.-F. Xu, X.-D. Wu, Q.-W. Lin, J.-F. Hu, R. Ran, D. Weng, Appl. Catal., A 570 (2019) 42-50
    [10]
    H. Li, G.-F. Qu, Y.-K. Duan, P. Ning, Q.-L. Zhang, X. Liu, Z.-X. Song, Chem. Pap. 69 (2015), 817-826
    [11]
    J.-H. Li, Y. Peng, H.-Z. Chang, X. Li, J. Crittenden, J.-M. Hao, Front. Environ. Sci. Eng. 10 (2016) 413
    [12]
    L.-L. Li, W. Tan, X.-Q. Wei, Z.-X. Fan, A.-N. Liu, K. Guo, K.-L. Ma, S.-H. Yu, C.-Y. Ge, C.-J. Tang, L. Dong, Catal. Commun. 114 (2018) 10-14
    [13]
    C.-M. Li, H. Zeng, P.-L. Liu, J. Yu, F. Guo, G.-W. Xu, Z.-G. Zhang, RSC Adv. 7 (2017) 53622-53630
    [14]
    S.-Q. Zhang, C. Zhang, Q. Wang, W.-S. Ahn, Ind. Eng. Chem. Res. 58 (2019) 22857-22865
    [15]
    H.-F. Lin, A. Abubakar, C.-M. Li, Y.-J. Li, C. Wang, S.-Q. Gao, Z.-N. Liu, J. Yu, Catal. Lett. 150 (2020) 702-712
    [16]
    L. Qi, Z.-G. Sun, Q. Tang, J. Wang, T.-Z. Huang, C.-Z. Sun, F. Gao, C.-J. Tang, L. Dong, J. Hazard. Mater. 396 (2020) 122459
    [17]
    J.-K. Wu, Z.-Q. Gong, C.-M. Lu, S.-L. Niu, K. Ding, L.-T. Xu, K. Zhang, Catalysts 8 (2018) 35
    [18]
    Z.-Q. Gong, J. Ma, D. Wang, S.-L. Niu, B.-H. Yan, Q.-L. Shi, C.-M. Lu, J. Crittenden, J. Hazard. Mater. 394 (2020) 9
    [19]
    B. Wang, J. Ma, D. Wang, Z.-Q. Gong, Q.-L. Shi, C. Gao, C.-M., Lu, C., Crittenden, Catal. Today. (2020) DOI: https://doi.org/10.1016/j.cattod.2020.05.036
    [20]
    Q.-L. Zhang, H.-M. Wang, P. Ning, Z.-X. Song, X. Liu, Y.-K. Duan, Appl. Surf. Sci. 419 (2017) 733-743
    [21]
    D. Wang, Y. Peng, Q.-L. Yang, F. Hu, J.-H. Li, J. Crittenden, Catal. Today 332 (2019) 42-48
    [22]
    W.-Y. Qu, X.-N. Liu, J.-X. Chen, Y.-Y. Dong, X.-F. Tang, Y.-X. Chen, Nat. Commun. 11 (2020) 1532
    [23]
    W.-P. Shan, F.-D. Liu, H. He, X.-Y. Shi, C.-B Zhang, Appl. Catal., B 115-116 (2012) 100-106
    [24]
    K.-B. Nam, D.-W. Kwon, S.-C. Hong, Appl. Catal., A 542 (2017) 55-62
    [25]
    G.-D. Zhang, X.-S. Huang, X. Yang, Z.-C. Tang, Catal. Sci. Technol. 9 (2019) 2231-2244
    [26]
    C.-X. Liu, L. Chen, H.-Z. Chang, L. Ma, Y. Peng, H. Arandiyan, J.-H. Li, Catal. Commun. 40 (2013) 145-148
    [27]
    X. Li, J.-H. Li, Y. Peng, H.-Z. Chang, T. Zhang, S. Zhao, W.-Z. Si, J.-M. Hao, Appl. Catal., B 184 (2016) 246-257
    [28]
    L.-W. Xu, C.-Z. Wang, H.-Z. Chang, Q.-R. Wu, T. Zhang, J.-H. Li, Environ. Sci. Technol. 52 (2018) 7064-7071
    [29]
    C. Gao, G.-P. Yang, D. Wang, Z.-Q. Gong, X. Zhang, B. Wang, Y. Peng, J.-H. Li, C.-M. Lu, J. Crittenden, Chemosphere 257 (2020) 127215
    [30]
    Z.-B. Xiong, X. Ning, F. Zhou, B. Yang, Y.-W. Tu, J. Jin, W. Lu, Z.-H. Liu, RSC Adv. 8 (2018) 21915-21925
    [31]
    Z.-B. Xiong, J. Liu, F. Zhou, D.-Y. Liu, W. Lu, J. Jin, S.-F. Ding, Appl. Surf. Sci. 406 (2017) 218-225
    [32]
    Z.-B. Xiong, B. Peng, F. Zhou, C. Wu, W. Lu, J. Jin, S.-F. Ding, Powder Technol. 319 (2017) 19-25
    [33]
    A. Stahl, Z. Wang, T. Schwammle, J. Ke, X.-B. Li, Catalysts 7 (2017) 71
    [34]
    K. Zhang, J.-J. Wang, P.-F. Guan, N. Li, Z.-J. Gong, R. Zhao, H.-J. Luo, W.-F. Wu, Mater. Res. Bull. 128 (2020) 110871
    [35]
    Y. Peng, K.-Z. Li, J.-H. Li, Appl. Catal., B 140-141 (2013) 483-492
    [36]
    L. Chen, J.-H. Li, M.-F. Ge, Environ. Sci. Technol. 44 (2010) 9590-9596
    [37]
    L. Chen, J.-H. Li, W. Ablikim, J. Wang, H.-Z. Chang, L. Ma, J.-Y. Xu, M.-F. Ge, H. Arandiyan, Catal. Lett. 141 (2011) 1859-1864
    [38]
    S.-S Liu, H. Wang, Y. Wei, R.-D. Zhang, Mol. Catal. 485 (2020) 110822
    [39]
    Y. Jiang, Z.-M. Xing, X.-C. Wang, S.-B. Huang, X.-W. Wang, Q.-Y. Liu, Fuel 151 (2015) 124-129
    [40]
    D.-W. Kwon, S.-C. Hong, Appl. Surf. Sci. 356 (2015) 181-190
    [41]
    Y.-G. Ma, D.-Y. Zhang, H.-M. Sun, J.-F. Wu, P. Liang, H.-W. Zhang, Ind. Eng. Chem. Res. 57 (2018) 3187-3194
    [42]
    W.-B. Sun, X.-Y. Li, Q.-D. Zhao, J.-C. Mu, J.-H. Chen, Catal. Lett. 148 (2018) 227-234
    [43]
    S.-J. Yang, C.-Z. Wang, L. Ma, Y., Peng, Z. Qu, N.-Q. Yan, J.-H. Chen, H.-Z. Chang, J.-H. Li, Catal. Sci. Technol. 3 (2012) 161-168
    [44]
    D. Wang, Y. Peng, S.-C. Xiong, B. Li, L.-N. Gan, C.-M. Lu, J.-J. Chen, Y.-L. Ma, J.-H. Li, Appl. Catal., B 221 (2018) 556-564
    [45]
    H.-P. Ning, H.-X. Yan, Z.-P., Gao, X.-Y., Wei, M.-J. Reece, Ceram. Int. 39 (2013) 7669-7675
    [46]
    J. Han, D.-S. Zhang, P. Maitarad, L.-Y. Shi, S.-X. Cai, H.-R. Li, L. Huang, J.-P. Zhang, Catal. Sci. Technol. 5 (2015) 438-446
    [47]
    J.-W. Shi, Y. Wang, R.-B. Duan, C. Gao, B.-R. Wang, C. He, C.-M. Niu, Catal. Sci. Technol. 9 (2019) 718-730
    [48]
    S.-B. Ma, H.-S. Tan, Y.-S. Li, P.-Q. Wang, C. Zhao, X.-Y. Niu, Y.-J. Zhu, Chemosphere 243 (2020) 125309
    [49]
    W.-P. Shan, F.-D. Liu, H., He, X.-Y. Shi, C.-B. Zhang, Chem. Commun. (Camb) 47 (2011) 8046-8048
    [50]
    X. Li, J.-H. Li, Y. Peng, T. Zhang, S. Liu, J.-M. Hao, Catal. Sci. Technol. 5 (2015) 4556-4564
    [51]
    F.-Y. Gao, X.-L. Tang, H.-H. Yi, J.-Y. Li, S.-Z. Zhao, J.-E Wang, C. Chu, C.-L Li, Chem. Eng. J. 317 (2017) 20-31
    [52]
    Z.-G. Li, J.-H. Li, S.-X. Liu, X.-N. Ren, J. Ma, W.-K Su, Y. Peng, Catal. Today 258 (2015) 11-16
    [53]
    S.-S.-R. Putluru, L. Schill, A.-D. Jensen, B. Siret, F. Tabaries, R. Fehrmann, Appl. Catal., B 165 (2015) 628-635
    [54]
    W.-T. Mu, J. Zhu, S. Zhang, Y.-Y. Guo, L.-Q. Su, X.-Y. Li, Z. Li, Catal. Sci. Technol. 6 (2016) 7532-7548
    [55]
    F.-X. Li, J.-L. Xie, K. Qi, P.-J. Gong, F. He, Catal. Lett. 149 (2018) 788-797
    [56]
    M.-H. Yuan, W.-Y. Deng, S.-L. Dong, Q.-C. Li, B.-T. Zhao, Y.-X. Su, Chem. Eng. J. 353 (2018) 839-848
    [57]
    Y.-C. You, S.-Y. Chen, J.-Y. Li, J. Zeng, H.-Z. Chang, L. Ma, J.-H. Li, J. Hazard. Mater. 383 (2020) 121117
    [58]
    S.-S.-R. Putluru, L. Schill, S. Mossin, A.-D. Jensen, R. Fehrmann, Catal. Lett. 144 (2014) 1170-1177
    [59]
    Y. Xin, N.-N. Zhang, Q. Li, Z.-L. Zhang, X.-M. Cao, L.-R. Zheng, Y.-W. Zeng, J.-A. Anderson, Appl. Catal., B 229 (2018) 81-87
    [60]
    E.-N. Ndifor, T. Garcia, B. Solsona, S.-H. Taylor, Appl. Catal., B 76 (2007) 248-256
    [61]
    Z.-R. Ma, D. Weng, X.-D. Wu, Z.-C. Si, J. Environ. Sci. (China) 24 (2012) 1305-1316
    [62]
    X. Gao, Y. Jiang, Y.-C. Fu, Y. Zhong, Z.-Y. Luo, K.-F. Cen, Catal. Commun. 11 (2010), 465-469
    [63]
    T. Zhang, F. Qiu, H.-Z. Chang, Y. Peng, J.-H. Li, Catal. Commun. 100 (2017) 117-120
    [64]
    Y.-P. Zhang, X.-P. Yue, T.-J. Huang, K. Shen, B. Lu, Mater. 11 (2018) 1307
    [65]
    N. Liu, J.-Y. Wang, F.-Y. Wang, J. Liu, J. Rare Earths 36 (2018) 594-602
    [66]
    J.-P. Wang, Z. Yan, L.-L. Liu, Y. Chen, Z.-T. Zhang, X.-D. Wang, Appl. Surf. Sci. 313 (2014) 660-669
    [67]
    X. Li, J.-H. Li, Y. Peng, X.-S. Li, K.-Z. Li, J.-M. Hao, J. Phys. Chem. C 120 (2016) 18005-18014
    [68]
    L.-N. Gan, W.-B. Shi, K.-Z. Li, J.-J. Chen, Y. Peng, J.-H. Li, ACS Appl. Mater. Interfaces 10 (2018) 30426-30432
    [69]
    W.-Q. Xu, H. He, Y.-B. Yu, J. Phys. Chem. C 113 (2009) 4426-4432
    [70]
    Z.-M. Liu, J.-Z. Zhu, J.-H. Li, L.-L. Ma, S.-I. Woo, ACS Appl. Mater. Interfaces 6 (2014) 14500-14508
    [71]
    S.-W. Liu, R.-T. Guo, X. Sun, J. Liu, W.-G. Pan, Z.-L. Xin, X. Shi, Z.-Y. Wang, X.-Y. Liu, H. Qin, J. Energy Inst. 92 (2019) 1610-1617
    [72]
    S.-Z. Xie, L.-L. Li, L.-J. Jin, Y.-H. Wu, H. Liu, Q.-J. Qin, X.-L. Wei, J.-X. Liu, L.-H. Dong, B. Li, Appl. Surf. Sci. 515 (2020) 146014
    [73]
    P.-P. Zhao, M.-Y. Guo, Q.-L. Liu, L.-J. Fan, J.-F. Han, C.-X. Liu N. Ji, C.-F. Song, D.-G. Ma, Z.-G. Li, Chem. Eng. J. 378 (2019) 122100
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (202) PDF downloads(30) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return