Turn off MathJax
Article Contents
Wen-Hai Zhang, Jian Gao, Yue Zhang, Christoph Held, Gangqiang Yu, Hong Meng. Ionic Liquids for olefin extractive separation from fluid catalytic cracking naphtha: Thermodynamics and molecular mechanisms. Green Energy&Environment. doi: 10.1016/j.gee.2025.09.005
Citation: Wen-Hai Zhang, Jian Gao, Yue Zhang, Christoph Held, Gangqiang Yu, Hong Meng. Ionic Liquids for olefin extractive separation from fluid catalytic cracking naphtha: Thermodynamics and molecular mechanisms. Green Energy&Environment. doi: 10.1016/j.gee.2025.09.005

Ionic Liquids for olefin extractive separation from fluid catalytic cracking naphtha: Thermodynamics and molecular mechanisms

doi: 10.1016/j.gee.2025.09.005
  • This study investigates the extractive separation of olefins from fluid catalytic cracking (FCC) naphtha using ionic liquids (ILs), from the perspectives of molecular thermodynamics and separation mechanisms. Initially, a representative binary mixture of benzene and 1-hexene was employed to screen various ILs for their separation performance, based on COSMO-RS calculations combined with relevant physicochemical property evaluations. Consequently, 1-ethyl-3-methylimidazolium thiocyanate ([EMIM][SCN]) was identified as the most promising extractant. Subsequently, the liquid-liquid equilibrium (LLE) behavior of ternary systems involving the selected IL and the benchmark solvent sulfolane (SUL) was quantitatively predicted using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT). In this modeling framework, ILs were treated as electrically neutral components due to the significant ion-pair electrostatic interactions in non-aqueous media, thus, the IL-related mixed systems are named as “complex strong electrostatic-hydrogen bonding organic systems”. Finally, quantum chemical (QC) calculations were conducted to elucidate the underlying molecular-level separation mechanism. The results indicate that [EMIM][SCN] exhibits significantly stronger intermolecular interactions with the organic components than SUL, thus accounting for its superior extraction performance. These findings provide valuable insights for the rational design of task-specific ILs for efficient olefin separation in petroleum refining processes.

     

  • loading
  • [1]
    L. Yang, H. Cao, Y. Yue, C. Yang, H. Liu, T. Wang, X. Bao, Fuel Process. Technol. 208 (2020) 106498.
    [2]
    T.G. Kaufmann, A. Kaldor, G.F. Stuntz, M.C. Kerby, L.L. Ansell, Catal. Today 62(1) (2000) 77-90.
    [3]
    I.V. Babich, J.A. Moulijn, Fuel 82(6) (2003) 607-631.
    [4]
    B. Xia, L. Cao, K. Luo, L. Zhao, X. Wang, J. Gao, C. Xu, Energy Fuels, 33(5) (2019) 4462-4473.
    [5]
    S. Brunet, D. Mey, G. Perot, C. Bouchy, F. Diehl, Appl. Catal. 278(2) (2005) 143-172.
    [6]
    Y. Lei, W. Pan, S. Hu, Y. Kuang, X. Liu, Y. Chen, Ind. Eng. Chem. Res. 63(44) (2024) 19187-19199.
    [7]
    R. Deng, Y. Sun, H. Bi, H. Dou, H. Yang, B. Wang, W. Tao, B. Jiang, Energy Fuels 31(10) (2017) 11146-11155.
    [8]
    J. Cui, M. Yin, T. Zheng, H. Liu, R. Zhang, H. Liu, Z. Liu, C. Xu, X. Meng, ACS Omega 10(17) (2025) 17744-17757.
    [9]
    Y. Zhang, L. Zhao, F. Chen, Y. Wang, J. Gao, L. Cao, H. Wang, C. Xu, AIChE J. 67(5) (2021) e17153.
    [10]
    S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, S. Zhang, Chem. Rev. 117(14) (2017) 9625-9673.
    [11]
    Y. Zhang, H. Xu, H. Wu, L. Shi, J. Wang, Q. Yi, Front. Chem. Sci. Eng. 18(1) (2024) 4.
    [12]
    J. Cheng, K. Xie, P. Guo, H. Qin, L. Deng, Z. Qi, Z. Song, Chem. Eng. Sci. 281 (2023) 119133.
    [13]
    G. Yu, C. Dai, B. Wu, N. Liu, B. Chen, R. Xu, Green Energy Environ. 6(3) (2021) 350-362.
    [14]
    J. Zhang, S. Fang, L. Zheng, X. Li, Y. Ma, H. Zhang, Z. Cai, Y. Cao, K. Huang, L. Jiang, AIChE J. 69(12) (2023) e18231.
    [15]
    G. Yu, M. Mu, J. Li, B. Wu, R. Xu, N. Liu, B. Chen, C. Dai, ACS Sustainable Chem. Eng. 8(24) (2020) 9058-9069.
    [16]
    P. Hapiot, C. Lagrost, Chem. Rev. 108(7) (2008) 2238-2264.
    [17]
    Y. Li, F. Li, A. Laaksonen, C. Wang, P. Cobden, P. Boden, Y. Liu, X. Zhang, X. Ji, Ind. Chem. Mater. 1(3) (2023) 410-430.
    [18]
    J. Feng, H. Gao, L. Zheng, Z. Chen, S. Zeng, C. Jiang, H. Dong, L. Liu, S. Zhang, X. Zhang, Nat. Commun. 11(1) (2020) 4341.
    [19]
    G. Yu, C. Dai, N. Liu, R. Xu, N. Wang, B. Chen, Chem. Rev. 124(6) (2024) 3331-3391.
    [20]
    Y. Guo, X. Zhang, B. Chen, G. Sadowski, C. Held, G. Yu, AIChE J. 71(8) (2025) e18860.
    [21]
    G. Yu, Y. Li, X. Zhang, I.B. Jovein, P. Figiel, B. Chen, Y. Ji, G. Sadowski, C. Held, AIChE J. (2025) e18907.
    [22]
    S. Werner, M. Haumann, P. Wasserscheid, Annu. Rev. Chem. Biomol. Eng. 1(1) (2010) 203-230.
    [23]
    E. Gomez, I. Dominguez, N. Calvar, J. Palomar, A. Dominguez, Fluid Phase Equilib. 361 (2014) 83-92.
    [24]
    Y. Guo, F. Shi, Q. Shu, X. Yue, C. Wang, L. Tao, J. Li, Fluid Phase Equilib. 529 (2021) 112882.
    [25]
    M. Larriba, P. Navarro, J. Garcia, F. Rodriguez, Ind. Eng. Chem. Res. 52(7) (2013) 2714-2720.
    [26]
    R.I. Canales, C. Held, M.J. Lubben, J.F. Brennecke, G. Sadowski, Ind. Eng. Chem. Res. 56(35) (2017) 9885-9894.
    [27]
    X. Ji, C. Held, G. Sadowski, Fluid Phase Equilib. 335 (2012) 64-73.
    [28]
    A. Samarov, I. Prikhodko, N. Shner, G. Sadowski, C. Held, A. Toikka, J. Chem. Eng. Data 64(12) (2019) 6049-6059.
    [29]
    S.E. Warrag, C. Pototzki, N.R. Rodriguez, M. van Sint Annaland, M.C. Kroon, C. Held, G. Sadowski, C.J. Peters, Fluid Phase Equilib. 467 (2018) 33-44.
    [30]
    S. MaassEn, W. Arlt, A. Klamt, Chem. Ing. Tech. 67(4) (1995) 476-479.
    [31]
    T. Banerjee, R.K. Sahoo, S.S. Rath, R. Kumar, A. Khanna, Ind. Eng. Chem. Res. 46(4) (2007) 1292-1304.
    [32]
    M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09 revision D. 01,(Gaussian Inc., 2009).
    [33]
    J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 40(4) (2001) 1244.
    [34]
    J. Gross, J. Vrabec, AIChE J. 52(3) (2006) 1194-1204.
    [35]
    J. Gross, AIChE J. 51(9) (2005) 2556-2568.
    [36]
    J.P. Wolbach, S.I. Sandler, Ind. Eng. Chem. Res. 37(8) (1998) 2917-2928.
    [37]
    F. Tumakaka, J. Gross, G. Sadowski, Fluid Phase Equilib. 228 (2005) 89-98.
    [38]
    S.H. Huang, M. Radosz, Ind. Eng. Chem. Res. 29(11) (1990) 2284-2294.
    [39]
    M. Kleiner, G. Sadowski, J. Phys. Chem. 111(43) (2007) 15544-15553.
    [40]
    T. Averbeck, G. Sadowski, C. Held, T. Seidensticker, Ind. Eng. Chem. Res. 63(28) (2024) 12648-12655.
    [41]
    J. Caßens, Verlag Dr. Hut. 2013.
    [42]
    P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98(45) (1994) 11623-11627.
    [43]
    S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32(7) (2011) 1456-1465.
    [44]
    T. Lu, F. Chen, J. Comput. Chem. 33(5) (2012) 580-592.
    [45]
    G. Yu, Y. Fu, W. Mu, N. Wang, I.B. Jovein, B. Chen, G. Sadowski, X. Ji, C. Held, AIChE J. 71(8) (2025) e18878.
    [46]
    A. DG, W. JA, K. DR, M. JW, J. Chem. Eng. Data 50(4) (2005) 1484-1491.
    [47]
    Z. Xiujuan, F. Zhen, L. Zhiping, C. Dapeng, J. Phys. Chem. B 116(10) (2012) 3249-3263.
    [48]
    D.B. Hand, J. Phys. Chem. 34(9) (1930) 1961-2000.
    [49]
    D. Othmer, P. Tobias, Ind. Eng. Chem. 34(6) (1942) 693-696.
    [50]
    T. Banerjee, M.K. Singh, A. Khanna, Ind. Eng. Chem. Res. 45(9) (2006) 3207-3219.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (30) PDF downloads(1) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return