Volume 10 Issue 8
Aug.  2025
Turn off MathJax
Article Contents
Zhiyong Li, Yibo Fu, Yilong Li, Ruipeng Li, Yuanchao Pei, Yunlei Shi, Huiyong Wang. Constructing multiple sites porous organic polymers for highly efficient and reversible adsorption of triiodide ion from water. Green Energy&Environment, 2025, 10(8): 1807-1818. doi: 10.1016/j.gee.2025.03.005
Citation: Zhiyong Li, Yibo Fu, Yilong Li, Ruipeng Li, Yuanchao Pei, Yunlei Shi, Huiyong Wang. Constructing multiple sites porous organic polymers for highly efficient and reversible adsorption of triiodide ion from water. Green Energy&Environment, 2025, 10(8): 1807-1818. doi: 10.1016/j.gee.2025.03.005

Constructing multiple sites porous organic polymers for highly efficient and reversible adsorption of triiodide ion from water

doi: 10.1016/j.gee.2025.03.005
  • The utilization of nuclear power will persist as a prominent energy source in the foreseeable future. However, it presents substantial challenges concerning waste disposal and the potential emission of untreated radioactive substances, such as radioactive 129I and 131I. The transportation of radioactive iodine poses a significant threat to both the environment and human health. Nevertheless, effectively, rapidly removing iodine ion from water using porous adsorbents remains a crucial challenge. In this work, three kinds of multiple sites porous organic polymers (POPs, POP-1, POP-2, and POP-3) have been developed using a monomer pre-modification strategy for highly efficient and fast I3 absorption from water. It is found that the POPs exhibited exceptional performance in terms of I3 adsorption, achieving a top-performing adsorption capacity of 5.25 g g−1 and the fastest average adsorption rate (K80% = 4.25 g g−1 h−1) with POP-1. Moreover, POP-1 exhibited exceptional capacity for the removal of I3 from flowing aqueous solutions, with 95% removal efficiency observed even at 0.0005 mol L−1. Such results indicate that this material has the potential to be utilized for the emergency preparation of potable water in areas contaminated with radioactive iodine. The adsorption process can be effectively characterized by the Freundlich model and the pseudo-second-order model. The exceptional I3 absorption capacity is primarily attributed to the incorporation of a substantial number of active adsorption sites, including bromine, carbonyl, and amide groups.

     

  • loading
  • [1]
    P.A. Kharecha, J.E. Hansen, Environ. Sci. Technol. 47 (2013) 4889-4895.
    [2]
    J. Krumins, M. Klavins, Energies 16 (2023) 3612.
    [3]
    P. Slovic, J.H. Flynn, M. Layman, Science 254 (1991) 1603-1607.
    [4]
    L. Xie, Z. Zheng, Q. Lin, H. Zhou, X. Ji, J.L. Sessler, H. Wang, Angew. Chem. Int. Ed. 61 (2022) e202113724.
    [5]
    S. Xu, S.P.H.T. Freeman, X. Hou, A. Watanabe, K. Yamaguchi, L. Zhang, Environ. Sci. Technol. 47 (2013) 10851-10859.
    [6]
    M.P. Little, R. Wakeford, A. Bouville, S.L. Simon, Proc. Nat. Aca. Sci. 113 (2016) 3720-3721.
    [7]
    G. Steinhauser, A. Brandl, T.E. Johnson, Sci. Total Environ. 470-471 (2014) 800-817.
    [8]
    R. Michel, J. Handl, T. Ernst, W. Botsch, S. Szidat, A. Schmidt, D. Jakob, D. Beltz, L.D. Romantschuk, H.A. Synal, C. Schnabel, J.M. Lopez-Gutierrez, Sci. Total Environ. 340 (2005) 35-55.
    [9]
    D.M. Taylor, J. Radioanal. Chem. 65 (1981) 195-208.
    [10]
    Y. Xie, L. Yu, L. Chen, C. Chen, L. Wang, F. Liu, Y. Liao, P. Zhang, T. Chen, Y. Yuan, Y. Lu, B. Huang, H. Yang, S. Wang, S. Wang, L. Ma, F. Luo, Y. Liu, B. Hu, H. Wang, D. Pan, W. Zhu, N. Wang, Z. Wang, L. Mao, S. Ma, X. Wang, Sci. China Chem. 67 (2024) 3515-3577.
    [11]
    Y. Lu, H. Liu, R. Gao, S. Xiao, M. Zhang, Y. Yin, S. Wang, J. Li, D. Yang, ACS Appl. Mater. Interfaces 8 (2016) 29179-29185.
    [12]
    C. Muhire, A. Tesfay Reda, D. Zhang, X. Xu, C. Cui, Chem. Eng. J. 431 (2022) 133816.
    [13]
    J. Zhou, Q. Chen, T. Li, T. Lan, P. Bai, F. Liu, Z. Yuan, W. Zheng, W. Yan, T. Yan, Inorg. Chem. 61 (2022) 7746-7753.
    [14]
    T.C.T. Pham, S. Docao, I.C. Hwang, M.K. Song, D.Y. Choi, D. Moon, P. Oleynikov, K.B. Yoon, Energy Environ. Sci. 9 (2016) 1050-1062.
    [15]
    B.J. Riley, S. Chong, M.J. Olszta, J.A. Peterson, ACS Appl. Mater. Interfaces 12 (2020) 19682-19692.
    [16]
    N.V. Nguyen, J. Jeong, D. Shin, B.-S. Kim, J.-C. Lee, B.D. Pandey, Mater. Transac. 53 (2012) 760-765.
    [17]
    Y. Li, Z. Li, R. Li, H. Wang, Y. Zhao, Y. Pei, J. Wang, J. Mol. Liq. 370 (2023) 121009.
    [18]
    X. Zhang, J. Maddock, T.M. Nenoff, M.A. Denecke, S. Yang, M. Schroder, Chem. Soc. Rev. 51 (2022) 3243-3262.
    [19]
    W. Xie, D. Cui, S.-R. Zhang, Y.-H. Xu, D.-L. Jiang, Mater. Horiz. 6 (2019) 1571-1595.
    [20]
    J. Wang, S. Zhuang, Coord. Chem. Rev. 400 (2019) 213046.
    [21]
    J. Li, H. Zhang, L. Zhang, K. Wang, Z. Wang, G. Liu, Y. Zhao, Y. Zeng, J. Mater. Chem. A 8 (2020) 9523-9527.
    [22]
    Y. Zhang, S.N. Riduan, Chem. Soc. Rev. 41 (2012) 2083-2094.
    [23]
    W. Ji, T.-X. Wang, X. Ding, S. Lei, B.-H. Han, Coord. Chem. Rev. 439 (2021) 213875.
    [24]
    Q. Hao, Y. Tao, X. Ding, Y. Yang, J. Feng, R.-L. Wang, X.-M. Chen, G.-L. Chen, X. Li, H. Ouyang, X. Hu, J. Tian, B.-H. Han, G. Zhu, W. Wang, F. Zhang, B. Tan, Z.-T. Li, D. Wang, L.-J. Wan, Sci. China Chem. 66 (2023) 620-682.
    [25]
    S.-Y. Yin, Z. Li, Y. Hu, X. Luo, J. Li, Green Energy Environ. 9 (2024) 1407-1418.
    [26]
    Z. Yan, Y. Yuan, Y. Tian, D. Zhang, G. Zhu, Angew. Chem. Int. Ed. 54 (2015) 12733-12737.
    [27]
    J. Wang, C. Wang, H. Wang, B. Jin, P. Zhang, L. Li, S. Miao, Microp. Mesop. Mater. 310 (2021) 110596.
    [28]
    Z. Li, H. Li, D. Wang, A. Suwansoontorn, G. Du, Z. Liu, M. M. Hasan, Y. Nagao, Polymer 204 (2020) 122796.
    [29]
    Y. Xie, T. Pan, Q. Lei, C. Chen, X. Dong, Y. Yuan, J. Shen, Y. Cai, C. Zhou, I. Pinnau, Y. Han, Angew. Chem. Int. Ed. 60 (2021) 22432-22440.
    [30]
    P. Wang, Q. Xu, Z. Li, W. Jiang, Q. Jiang, D. Jiang, Adv. Mater. 30 (2018) 1801991.
    [31]
    A. Bhaskarapillai, V. Thangaraj, M.P. Srinivasan, S. Velmurugan, New J. Chem. 43 (2019) 1117-1121.
    [32]
    Q.M. Zhang, T.L. Zhai, Z. Wang, G. Cheng, H. Ma, Q.P. Zhang, Y.H. Zhao, B. Tan, C. Zhang, Adv. Mater. Interf. 6 (2019) 1900249.
    [33]
    A. Hassan, S. Goswami, A. Alam, R. Bera, N. Das, Sep. Purif. Technol. 257 (2021) 117923.
    [34]
    J. Cao, H. Zhu, L. Shangguan, Y. Liu, P. Liu, Q. Li, Y. Wu, F. Huang, Polymer Chem. 12 (2021) 3517-3521.
    [35]
    W. Zhou, A. Li, M. Zhou, Y. Xu, Y. Zhang, Q. He, Nature Commun.14 (2023) 5388.
    [36]
    G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo, Chem. Rev. 116 (2016) 2478-2601.
    [37]
    H. Fujita, H. Jing, M. Krayer, S. Allu, G. Veeraraghavaiah, Z. Wu, J. Jiang, J.R. Diers, N.C.M. Magdaong, A.K. Mandal, A. Roy, D.M. Niedzwiedzki, C. Kirmaier, D.F. Bocian, D. Holten, J.S. Lindsey, New J. Chem. 43 (2019) 7209-7232.
    [38]
    Y. Huo, S. Xiu, L.-Y. Meng, B. Quan, Chem. Eng. J. 451 (2023) 138572.
    [39]
    S.Y. Zhang, X.H. Tang, Y.L. Yan, S.Q. Li, S. Zheng, J. Fan, X. Li, W.G. Zhang, S. Cai, ACS Macro. Lett. 10 (2021) 1590-1596.
    [40]
    G. Das, D. Balaji Shinde, S. Kandambeth, B.P. Biswal, R. Banerjee, Chem. Commun. 50 (2014) 12615-12618.
    [41]
    W. Ji, R. Sun, Y. Geng, W. Liu, X. Wang, Anal. Chim. Acta 1001 (2018) 179-188.
    [42]
    J. Qiu, P. Guan, Y. Zhao, Z. Li, H. Wang, J. Wang, Green Chem. 22 (2020) 7537-7542.
    [43]
    F. Li, L.-G. Ding, B.-J. Yao, N. Huang, J.-T. Li, Q.-J. Fu, Y.-B. Dong, J. Mater. Chem. A 6 (2018) 11140-11146.
    [44]
    A. Galan, G. Aragay, P. Ballester, Chem. Sci. 7 (2016) 5976-5982.
    [45]
    D. Dai, J. Yang, Y. Zou, J. Wu, L. Tan, Y. Wang, B. Li, T. Lu, B. Wang, Y.W. Yang, Angew. Chem. Int. Ed. 60 (2021) 8967-8975.
    [46]
    J. Heo, J.G. Kim, E.H. Choi, H. Ki, D.-S. Ahn, J. Kim, S. Lee, H. Ihee, Nature Commun. 13 (2022) 522.
    [47]
    Y. Zhu, Y. Ji, D. Wang, Y. Zhang, H. Tang, X.-R. Jia, M. Song, G. Yu, G.-C. Kuang, J. Mater. Chem. A 5 (2017) 6622-6629.
    [48]
    Y. Liao, J. Weber, B. Mills, Z. Ren, C. Faul, Macromolecules 49 (2016) 6322-6333.
    [49]
    J. Jeromenok, J. Weber, Langmuir 29 (2013) 12982-12989.
    [50]
    X. Guo, Y. Li, M. Zhang, K. Cao, Y. Tian, Y. Qi, S. Li, K. Li, X. Yu, L. Ma, Angew. Chem. Int. Ed. 59 (2020) 22697-22705.
    [51]
    J. Chen, Q. Gao, X. Zhang, Y. Liu, P. Wang, Y. Jiao, Y. Yang, Sci. Total Environ. 646 (2019) 634-644.
    [52]
    Y. Chen, S. Yu, Q. Yao, S. Fu, G. Zhou, J. Colloid Interf. Sci. 510 (2018) 280-291.
    [53]
    N. Bagchi, T.R. Brown, E. Urdanivia, R.S. Sundick, Science 230 (1985) 325-327.
    [54]
    U.L. J.K. Fawell, B. Mintz, WHO Guidelines for Drinking-water Quality 2 (1996) https://www.who.int/docs/default-source/wash-documents/wash-chemicals/iodine-background-document.pdf.
    [55]
    L. Xie, Z. Zheng, Q. Lin, H. Zhou, X. Ji, J. Sessler, H. Wang, Angew. Chem. Int. Ed. 61 (2022) e202113724.
    [56]
    C.-P. Li, H.-R. Li, J.-Y. Ai, J. Chen, M. Du, ACS Centr. Sci. 6 (2020) 2354-2361.
    [57]
    B. Hayati, N.M. Mahmoodi, A. Maleki, Res. Chem. Interm. 41 (2015) 3743-3757.
    [58]
    J. Ren, Z. Zhu, Y. Qiu, F. Yu, T. Zhou, J. Ma, J. Zhao, Green Energy Environ. 10 (2024) 433-440.
    [59]
    G. Das, S. Balaji, S. Kandambeth, B. Biswal, R. Banerjee, Chem. Commun. 50 (2014) 12615-12618.
    [60]
    Y. Tang, H. Huang, J. Li, W. Xue, C. Zhong, J. Mater. Chem. A 7 (2019) 18324-18329.
    [61]
    T. Geng, W. Zhang, Z. Zhu, G. Chen, L. Ma, S. Ye, Q. Niu, Polymer Chem. 9 (2018) 777-784.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (176) PDF downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return