Volume 10 Issue 5
May  2025
Turn off MathJax
Article Contents
Ping Lu, Zhenhua Sun, Xinrong Ke, Changshen Ye, Zhixian Huang, Ting Qiu. Solvent-free synthesis of highly dispersed zinc-doped porous carbons as efficient dibenzothiophene adsorbents. Green Energy&Environment, 2025, 10(5): 994-1001. doi: 10.1016/j.gee.2024.09.010
Citation: Ping Lu, Zhenhua Sun, Xinrong Ke, Changshen Ye, Zhixian Huang, Ting Qiu. Solvent-free synthesis of highly dispersed zinc-doped porous carbons as efficient dibenzothiophene adsorbents. Green Energy&Environment, 2025, 10(5): 994-1001. doi: 10.1016/j.gee.2024.09.010

Solvent-free synthesis of highly dispersed zinc-doped porous carbons as efficient dibenzothiophene adsorbents

doi: 10.1016/j.gee.2024.09.010
  • Designing efficient adsorbents for the deep removal of refractory dibenzothiophene (DBT) from fuel oil is vital for addressing environmental issues such as acid rain. Herein, zinc gluconate and urea-derived porous carbons SF-ZnNC-T (T represents the carbonization temperature) were synthesized without solvents. Through a temperature-controlled process of “melting the zinc gluconate and urea mixture, forming H-bonded polymers, and carbonizing the polymers,” the optimal carbon, SF-ZnNC-900, was obtained with a large surface area (2280 m2 g-1), highly dispersed Zn sites, and hierarchical pore structures. Consequently, SF-ZnNC-900 demonstrated significantly higher DBT adsorption capacity of 43.2 mg S g-1, compared to just 4.3 mg S g-1 for the precursor. It also demonstrated good reusability, fast adsorption rate, and the ability for ultra-deep desulfurization. The superior DBT adsorption performance resulted from the evaporation of residual zinc species, which generated abundant mesopores that facilitated DBT transformation, as well as the formation of Zn-N sites that strengthened the host-guest interaction (ΔE = -1.466 eV). The solvent-free synthesized highly dispersed Zn-doped carbon shows great potential for producing sulfur-free fuel oil and for designing metal-loaded carbon adsorbents.

     

  • loading
  • [1]
    P. Tan, Y. Jiang, L.B. Sun, X.Q. Liu, K. AlBahily, U. Ravon, A. Vinu, J. Mater. Chem. A 6 (2018) 23978-24012.
    [2]
    P. Lu, Z. Qi, J. Chen, C. Ye, T. Qiu, Small (2023) 2304644.
    [3]
    P. Lu, M. Yin, J. Chen, Q. Wang, C. Ye, T. Qiu, Chem. Eng. J. 429 (2022) 132458.
    [4]
    X. Ma, L. Sun, C. Song, Catal. Today 77 (2002) 107-116.
    [5]
    H. Yang, M. Luo, S. Lu, Q. Zhang, Y. Chao, F. Lv, L. Zhu, L. Bai, L. Yang, W. Wang, D. Wei, Y. Liang, L. Gu, H. Chen, S. Guo, Chem 8 (2022) 2460-2471.
    [6]
    W. Jiang, X. An, J. Xiao, Z. Yang, J. Liu, H. Chen, H. Li, W. Zhu, H. Li, S. Dai, ACS Catal. 12 (2022) 8623-8631.
    [7]
    J. Lu, J.K. Wu, Y. Jiang, P. Tan, L. Zhang, Y. Lei, X.Q. Liu, L.B. Sun, Angew. Chem. Int.Ed. 59 (2020) 6428-6434.
    [8]
    S.-C. Qi, X.-Y. Qian, Q.-X. He, K.-J. Miao, Y. Jiang, P. Tan, X.-Q. Liu, L.-B. Sun, Angew. Chem. Int.Ed. 58 (2019) 10104-10109.
    [9]
    N.A. Khan, C.M. Kim, S.H. Jhung, Chem. Eng. J. 311 (2017) 20-27.
    [10]
    Y.-X. Li, J.-X. Shen, S.-S. Peng, J.-K. Zhang, J. Wu, X.-Q. Liu, L.-B. Sun, Nat. Commun. 11 (2020) 3206.
    [11]
    W. Tang, J. Gu, H. Huang, D. Liu, C. Zhong, AIChE J. 62 (2016) 4491-4496.
    [12]
    P. Tan, D.-M. Xue, J. Zhu, Y. Jiang, Q.-X. He, Z. Hou, X.-Q. Liu, L.-B. Sun, AIChE J. 64 (2018) 3786-3793.
    [13]
    S. Shi, Y.-X. Li, S.-S. Li, X.-Q. Liu, L.-B. Sun, Green Energy Environ. 7 (2022) 345-351.
    [14]
    Y.X. Li, M.M. Jin, S. Shi, S.C. Qi, X.Q. Liu, L.B. Sun, AIChE J. (2021) e17368.
    [15]
    G. Zhang, Q. Zhu, W. Zhang, Y. Zheng, Y. Cao, S. Liang, Y. Xiao, F. Liu, L. Jiang, Inorg. Chem. 61 (2022) 6083-6093.
    [16]
    M. Seredych, C.T. Wu, P. Brender, C.O. Ania, C. Vix-Guterl, T.J. Bandosz, Fuel 92 (2012) 318-326.
    [17]
    Y.-S. Cheng, X.-P. Chu, M. Ling, N. Li, K.-L. Wu, F.-H. Wu, H. Li, G. Yuan, X.-W. Wei, Catal. Sci. Technol. 9 (2019) 5668-5675.
    [18]
    C. Xie, L. Lin, L. Huang, Z. Wang, Z. Jiang, Z. Zhang, B. Han, Nat. Commun. 12 (2021) 4823.
    [19]
    J. Wang, H. Li, S. Liu, Y. Hu, J. Zhang, M. Xia, Y. Hou, J. Tse, J. Zhang, Y. Zhao, Angew. Chem. Int. Ed. 60 (2021) 181-185.
    [20]
    F. Zheng, Y. Yang, Q. Chen, Nat. Commun. 5 (2014) 5261.
    [21]
    Q. Huo, J. Li, X. Qi, G. Liu, X. Zhang, B. Zhang, Y. Ning, Y. Fu, J. Liu, S. Liu, Chem. Eng. J. 378 (2019) 122106.
    [22]
    Q. Huo, J. Li, G. Liu, X. Qi, X. Zhang, Y. Ning, B. Zhang, Y. Fu, S. Liu, Chem. Eng. J. 362 (2019) 287-297.
    [23]
    C. Van Nguyen, S. Lee, Y.G. Chung, W.-H. Chiang, K.C.W. Wu, Appl. Catal. B, Environ. 257 (2019) 117888.
    [24]
    X. Ke, P. Lu, J. Cai, J. Wang, C. Ye, C. Yang, T. Qiu, Chem. Eng. Sci. 275 (2023) 118730.
    [25]
    A.M. Puziy, O.I. Poddubnaya, B. Gawdzik, J.M.D. Tascon, Carbon 157 (2020) 796-846.
    [26]
    B.N. Bhadra, A. Vinu, C. Serre, S.H. Jhung, Mater. Today 25 (2019) 88-111.
    [27]
    J. Li, S. Chen, N. Yang, M. Deng, S. Ibraheem, J. Deng, J. Li, L. Li, Z. Wei, Angew. Chem. Int. Ed. 58 (2019) 7035-7039.
    [28]
    C. Huang, Y. Tong, J. Li, J. Peng, D. Dong, Y. Chen, M. Liu, W. Sun, Q. Wang, M. Zhu, F. He, Chem. Eng. J. 452 (2023) 139391.
    [29]
    J. Luo, C. Wang, J. Liu, Y. Wei, Y. Chao, Y. Zou, L. Mu, Y. Huang, H. Li, W. Zhu, AIChE J. 67 (2021) e17280.
    [30]
    C. Wang, W. Lu, W. Wu, L. Zhang, W. Guo, G. Huang, S. Xu, Sep. Purif. Technol. 306 (2023) 122574.
    [31]
    X. Fang, J. Zou, N. Ma, W. Dai, Langmuir 38 (2022) 14451-14464.
    [32]
    P. Kaur, H.K. Chopra, Fuel Process. Technol. 238 (2022) 107480.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (46) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return