Volume 10 Issue 5
May  2025
Turn off MathJax
Article Contents
Jing-zhong Xu, Ting-an Zhang, Yan Liu, Zhihe Dou, Yishan Liu, Baiao Feng, Hongxuan Liu. Study on the effect of controlled disproportionation pore-forming and relative vacuum mechanism on the reduction rate of continuous magnesium smelting process. Green Energy&Environment, 2025, 10(5): 1002-1014. doi: 10.1016/j.gee.2024.09.006
Citation: Jing-zhong Xu, Ting-an Zhang, Yan Liu, Zhihe Dou, Yishan Liu, Baiao Feng, Hongxuan Liu. Study on the effect of controlled disproportionation pore-forming and relative vacuum mechanism on the reduction rate of continuous magnesium smelting process. Green Energy&Environment, 2025, 10(5): 1002-1014. doi: 10.1016/j.gee.2024.09.006

Study on the effect of controlled disproportionation pore-forming and relative vacuum mechanism on the reduction rate of continuous magnesium smelting process

doi: 10.1016/j.gee.2024.09.006
  • Compared with the vacuum continuous magnesium smelting process (RVCMS), its excellent energy saving and emission reduction performance provides a feasible method for green magnesium smelting. In the process of industrialization, the reduction rate of prefabricated pellets affects the yield of metal magnesium and the utilization of reducing slag. In this paper, the reduction mechanism under different carbonate structures is analyzed by controlled disproportionation of prefabricated pellets and micro-nano simulation. The results show that the low temperature decomposition of NH4·HCO3 pore-forming, improve the reduction rate (99.72%) effect is remarkable. Combined with thermodynamics and relative vacuum mechanism, a theoretical model of the relationship between disproportionation pore-forming and reduction rate was established. It was concluded that the energy consumption required to produce per ton of magnesium by adding NH4·HCO3 to the prefabricated pellets was reduced by 0.29-0.34 tce, and the carbon emission was reduced by 1.069-1.263 t. The reduction slag had good compressive strength (Side 101.19 N cm-2, Bottom 466.4 N cm-2). Compared with the 20 MPa reduction slag sample without pore-forming agent, the side compressive strength increased by 51.66%, and the bottom compressive strength increased by 119.10%. The amount of single furnace filler is increased by more than 50%.

     

  • loading
  • [1]
    J. Fu, F. Shen, X. Liu, X. Qi, Green Energy Environ. 8 (2023) 842-851.
    [2]
    H. Zhang, Q. Jia, F. Yan, Q. Wang, Green Energy Environ. 7 (2022) 105-115.
    [3]
    Z. Zhang, J.-H. Peng, J. Huang, P. Guo, Z. Liu, S.-C. Song, Y. Wang, J. Magnesium Alloys 8 (2020) 1102-1108.
    [4]
    S.T. Oyinbo, S. Singhaneka, R. Matsumoto, Vacuum 212 (2023) 111995.
    [5]
    Y.-Y. He, S.-W. Bai, G. Fang, J. Magnesium Alloys 10 (2022) 769-785.
    [6]
    Z. Qiu, R. Zeng, F. Zhang, L. Song, S. Li, Trans. Nonferrous Metals Soc. China 30 (2020) 2967-2979.
    [7]
    T. Ma, Y. Tian, B. Yang, B. Xu, F. Wang, G. Zha, D. Liang, L. Wang, Vacuum 205 (2022) 111452.
    [8]
    J. Xu, T. Zhang, H. Liu, J. Magnesium Alloys (2024) S2213956724001142.
    [9]
    Y. Tian, L. Wang, B. Yang, Y. Dai, B. Xu, F. Wang, N. Xiong, J. Magnesium Alloys 10 (2022) 697-706.
    [10]
    C. Zhang, H. Chu, M. Gu, S. Zheng, Appl. Therm. Eng. 135 (2018) 454-462.
    [11]
    C. Li, K. Wei, Y. Li, W. Ma, S. Zhao, H. Yu, Z. Guo, J. Liu, Vacuum 202 (2022) 111162.
    [12]
    P. Li, B. Liu, X. Lai, W. Liu, L. Gao, Z. Tang, Thermochim. Acta 710 (2022) 179164.
    [13]
    D. Hou, L. Liu, Y. Ke, X. Zhang, Q. Yang, H. Qiu, Q. Yu, Appl. Therm. Eng. 236 (2024) 121885.
    [14]
    A.M. Thomas, R.M. Nadeau, R. Burgmann, Nature 462 (2009) 1048-1051.
    [15]
    J.A. Teixeira, R.P. Fernandes, G. Isquibola, A.P.S. Gaspari, A.E.H. Machado, F.J. Caires, M. Ionashiro, Thermochim. Acta 711 (2022) 179184.
    [16]
    K.E. Shopsowitz, H. Qi, W.Y. Hamad, M.J. MacLachlan, Nature 468 (2010) 422-425.
    [17]
    M. Ulbricht, Nature 519 (2015) 41-42.
    [18]
    Y. Xia, L. Wu, W. Yao, M. Hao, J. Chen, C. Zhang, T. Wu, Z. Xie, J. Song, B. Jiang, Y. Ma, F. Pan, Trans. Nonferrous Metals Soc. China 31 (2021) 1612-1627.
    [19]
    M. Korenko, C. Larson, K. Blood, R. Palumbo, S. Nudehi, R. Diver, D. Blood, F. Simko, L.J. Venstrom, Energy 135 (2017) 182-194.
    [20]
    S.V.S. Prasad, S.B. Prasad, K. Verma, R.K. Mishra, V. Kumar, S. Singh, J. Magnesium Alloys 10 (2022) 1-61.
    [21]
    J. Liu, K. Wu, Z. Li, W. Li, Y. Ning, W. Wang, Y. Yang, Green Energy Environ. 7 (2022) 457-466.
    [22]
    Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, F. Pan, J. Magnesium Alloys 9 (2021) 705-747.
    [23]
    J. Han, D. Fu, J. Guo, Z. Ji, Z. Dou, T. Zhang, Metals 10 (2020) 1441.
    [24]
    B. Rosch, T.X. Gentner, J. Eyselein, J. Langer, H. Elsen, S. Harder, Nature 592 (2021) 717-721.
    [25]
    C. Dang, J. Wang, J. Wang, D. Yu, W. Zheng, C. Xu, Z. Wang, L. Feng, X. Chen, F. Pan, Vacuum 215 (2023) 112275.
    [26]
    H. Wu, P. Zhao, M. Jing, J. Li, T. Chen, Vacuum 183 (2021) 109822.
    [27]
    M. Huo, Z. Tang, L. Wang, L. Zhang, H. Guo, Y. Chen, P. Gu, J. Shi, Nat. Commun. 13 (2022) 7778.
    [28]
    M.F. Silva, S. Pimenta, J.A. Rodrigues, J.R. Freitas, M. Ghaderi, L.M. Goncalves, G. De Graaf, R.F. Wolffenbuttel, J.H. Correia, Vacuum 181 (2020) 109673.
    [29]
    J. Song, J. She, D. Chen, F. Pan, J. Magnesium Alloys 8 (2020) 1-41.
    [30]
    J.-H. Guo, D.-X. Fu, J.-B. Han, Z.-H. Ji, Z.-H. Dou, T.-A. Zhang, J. Min. Metall. Sect. B Metall. 56 (2020) 379-386.
    [31]
    S. Ma, F. Xing, N. Ta, L. Zhang, J. Magnesium Alloys 8 (2020) 819-831.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (12) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return