Volume 9 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
Fulong Zhu, Qiliang Chen, Yongzhu Fu. Perspectives on aqueous organic redox flow batteries. Green Energy&Environment, 2024, 9(11): 1641-1649. doi: 10.1016/j.gee.2024.08.003
Citation: Fulong Zhu, Qiliang Chen, Yongzhu Fu. Perspectives on aqueous organic redox flow batteries. Green Energy&Environment, 2024, 9(11): 1641-1649. doi: 10.1016/j.gee.2024.08.003

Perspectives on aqueous organic redox flow batteries

doi: 10.1016/j.gee.2024.08.003
  • Aqueous organic redox flow batteries (AORFBs) have pioneered new routes for large-scale energy storage. The tunable nature of redox-active organic molecules provides a robust foundation for creating innovative AORFBs with exceptional performance. Molecular engineering endows various organic molecules with considerable advantages in solubility, stability, and redox potential. Advanced characterizations have enabled a comprehensive understanding of the redox reaction and degradation mechanisms of these organic molecules. Computational chemistry and machine learning have guided the development of new organic molecules. The practical application of AORFBs will depend on the complementary efforts of multiple parties. This paper consolidates the current design principles of molecular engineering, degradation mechanisms, characterization techniques, and the utilization of computational chemistry. It also offers perspectives and forecasts the necessary attributes and strategic efforts for the next-generation AORFBs, aiming to provide the research community with a deeper understanding.

     

  • loading
  • [1]
    B. Dunn; H. Kamath; J.-M. Tarascon, Science 334 (2011) 928-935.
    [2]
    Z. Yang; J. Zhang; M.C.W. Kintner-Meyer; X. Lu; D. Choi; J.P. Lemmon; J. Liu, Chem. Rev. 111 (2011) 3577-3613.
    [3]
    C.A. Hunter; M.M. Penev; E.P. Reznicek; J. Eichman; N. Rustagi; S.F. Baldwin, Joule 5 (2021) 2077-2101.
    [4]
    R. Van Noorden, Nature 507 (2014) 26-28.
    [5]
    L. Zhang; R. Feng; W. Wang; G. Yu, Nat. Rev. Chem. 6 (2022) 524-543.
    [6]
    J.A. Dowling; K.Z. Rinaldi; T.H. Ruggles; S.J. Davis; M. Yuan; F. Tong; N.S. Lewis; K. Caldeira, Joule 4 (2020) 1907-1928.
    [7]
    O. Schmidt; S. Melchior; A. Hawkes; I. Staffell, Joule 3 (2019) 81-100.
    [8]
    M. Park; J. Ryu; W. Wang; J. Cho, Nat. Rev. Mater. 2 (2016) 16080.
    [9]
    Y. Ding; C. Zhang; L. Zhang; Y. Zhou; G. Yu, Chem. Soc. Rev. 47 (2018) 69-103.
    [10]
    F. Zhu; W. Guo; Y. Fu, Chem. Soc. Rev. 52 (2023) 8410-8446.
    [11]
    M. Quan; D. Sanchez; M.F. Wasylkiw; D.K. Smith, J. Am. Chem. Soc. 129 (2007) 12847-12856.
    [12]
    Z. Yang; L. Tong; D.P. Tabor; E.S. Beh; M.-A. Goulet; D. De Porcellinis; A. Aspuru-Guzik; R.G. Gordon; M.J. Aziz, Adv. Energy Mater. 8 (2018) 1702056.
    [13]
    C. Wang; Z. Yang; Y. Wang; P. Zhao; W. Yan; G. Zhu; L. Ma; B. Yu; L. Wang; G. Li; J. Liu; Z. Jin, ACS Energy Lett. 3 (2018) 2404-2409.
    [14]
    L. Tong; M.-A. Goulet; D.P. Tabor; E.F. Kerr; D. De Porcellinis; E.M. Fell; A. Aspuru-Guzik; R.G. Gordon; M.J. Aziz, ACS Energy Lett. 4 (2019) 1880-1887.
    [15]
    K. Lin; Q. Chen; M.R. Gerhardt; L. Tong; S.B. Kim; L. Eisenach; A.W. Valle; D. Hardee; R.G. Gordon; M.J. Aziz; M.P. Marshak, Science 349 (2015) 1529-1532.
    [16]
    T. Liu; X. Wei; Z. Nie; V. Sprenkle; W. Wang, Adv. Energy Mater. 6 (2016) 1501449.
    [17]
    M. Pan; L. Gao; J. Liang; P. Zhang; S. Lu; Y. Lu; J. Ma; Z. Jin, Adv. Energy Mater. 12 (2022) 2103478.
    [18]
    Y. Liu; M.-A. Goulet; L. Tong; Y. Liu; Y. Ji; L. Wu; R.G. Gordon; M.J. Aziz; Z. Yang; T. Xu, Chem 5 (2019) 1861-1870.
    [19]
    A. Hollas; X. Wei; V. Murugesan; Z. Nie; B. Li; D. Reed; J. Liu; V. Sprenkle; W. Wang, Nat. Energy 3 (2018) 508-514.
    [20]
    C. Zhang; Z. Niu; S. Peng; Y. Ding; L. Zhang; X. Guo; Y. Zhao; G. Yu, Adv. Mater. 31 (2019) 1901052.
    [21]
    N.P.N. Wellala; A. Hollas; K. Duanmu; V. Murugesan; X. Zhang; R. Feng; Y. Shao; W. Wang, J. Mater. Chem. A 9 (2021) 21918-21928.
    [22]
    W. Zhou; W. Liu; M. Qin; Z. Chen; J. Xu; J. Cao; J. Li, RSC Adv. 10 (2020) 21839-21844.
    [23]
    X. Zu; L. Zhang; Y. Qian; C. Zhang; G. Yu, Angew. Chem. Int. Ed. 59 (2020) 22163-22170.
    [24]
    B. Hu; C. Debruler; Z. Rhodes; T.L. Liu, J. Am. Chem. Soc. 139 (2017) 1207-1214.
    [25]
    Q. Chen; Y. Li; Y. Liu; P. Sun; Z. Yang; T. Xu, ChemSusChem 14 (2021) 1295-1301.
    [26]
    E.S. Beh; D. De Porcellinis; R.L. Gracia; K.T. Xia; R.G. Gordon; M.J. Aziz, ACS Energy Lett. 2 (2017) 639-644.
    [27]
    R. Feng; X. Zhang; V. Murugesan; A. Hollas; Y. Chen; Y. Shao; E. Walter; N.P.N. Wellala; L. Yan; K.M. Rosso; W. Wang, Science 372 (2021) 836-840.
    [28]
    R. Feng; Y. Chen; X. Zhang; B.J.G. Rousseau; P. Gao; P. Chen; S.T. Mergelsberg; L. Zhong; A. Hollas; Y. Liang; V. Murugesan; Q. Huang; E. Walter; S. Hammes-Schiffer; Y. Shao; W. Wang, Joule 7 (2023) 1609-1622.
    [29]
    X. Liu; T. Li; C. Zhang; X. Li, Angew. Chem. Int. Ed. 62 (2023) e202307796.
    [30]
    J. Luo; B. Hu; C. Debruler; T.L. Liu, Angewandte Chemie - International Edition 57 (2018) 231-235.
    [31]
    C. Debruler; B. Hu; J. Moss; X. Liu; J. Luo; Y. Sun; T.L. Liu, Chem 3 (2017) 961-978.
    [32]
    B. Huskinson; M.P. Marshak; C. Suh; S. Er; M.R. Gerhardt; C.J. Galvin; X. Chen; A. Aspuru-Guzik; R.G. Gordon; M.J. Aziz, Nature 505 (2014) 195-198.
    [33]
    S. Pang; X. Wang; P. Wang; Y. Ji, Angew. Chem. Int. Ed. 60 (2021) 5289-5298.
    [34]
    P.T. Sullivan; H. Liu; X.-L. Lv; S. Jin; W. Li; D. Feng, Adv. Energy Mater. 13 (2023) 2203919.
    [35]
    H. Fan; B. Hu; H. Li; M. Ravivarma; Y. Feng; J. Song, Angew. Chem. Int. Ed. 61 (2022) e202115908.
    [36]
    S. Hu; T. Li; M. Huang; J. Huang; W. Li; L. Wang; Z. Chen; Z. Fu; X. Li; Z. Liang, Adv. Mater. 33 (2021) 2005839.
    [37]
    A.N. Woodward; J.M. Kolesar; S.R. Hall; N.-A. Saleh; D.S. Jones; M.G. Walter, J. Am. Chem. Soc. 139 (2017) 8467-8473.
    [38]
    X.-L. Lv; P.T. Sullivan; W. Li; H.-C. Fu; R. Jacobs; C.-J. Chen; D. Morgan; S. Jin; D. Feng, Nat. Energy (2023).
    [39]
    T.A. Hamlin; M. Swart; F.M. Bickelhaupt, ChemPhysChem 19 (2018) 1315-1330.
    [40]
    K. Murugavel, Polym. Chem. 5 (2014) 5873-5884.
    [41]
    C. O'connor, Q. Rev. Chem. Soc. 24 (1970) 553-564.
    [42]
    D.P. Tabor; R. Gomez-Bombarelli; L. Tong; R.G. Gordon; M.J. Aziz; A. Aspuru-Guzik, J. Mater. Chem. A 7 (2019) 12833-12841.
    [43]
    J. Luo; A. Sam; B. Hu; C. Debruler; X. Wei; W. Wang; T.L. Liu, Nano Energy 42 (2017) 215-221.
    [44]
    M.-A. Goulet; L. Tong; D.A. Pollack; D.P. Tabor; S.A. Odom; A. Aspuru-Guzik; E.E. Kwan; R.G. Gordon; M.J. Aziz, J. Am. Chem. Soc. 141 (2019) 8014-8019.
    [45]
    Y. Jing; E.W. Zhao; M.-A. Goulet; M. Bahari; E.M. Fell; S. Jin; A. Davoodi; E. Jonsson; M. Wu; C.P. Grey; R.G. Gordon; M.J. Aziz, Nat. Chem. 14 (2022) 1103-1109.
    [46]
    K. Deuchert; S. Hunig, Angew. Chem. Int. Ed. 17 (1978) 875-886.
    [47]
    T. Janoschka; N. Martin; U. Martin; C. Friebe; S. Morgenstern; H. Hiller; M.D. Hager; U.S. Schubert, Nature 527 (2015) 78-81.
    [48]
    J. Winsberg; T. Janoschka; S. Morgenstern; T. Hagemann; S. Muench; G. Hauffman; J.-F. Gohy; M.D. Hager; U.S. Schubert, Adv. Mater. 28 (2016) 2238-2243.
    [49]
    T.P. Nguyen; A.D. Easley; N. Kang; S. Khan; S.-M. Lim; Y.H. Rezenom; S. Wang; D.K. Tran; J. Fan; R.A. Letteri; X. He; L. Su; C.-H. Yu; J.L. Lutkenhaus; K.L. Wooley, Nature 593 (2021) 61-66.
    [50]
    K. Peng; Y. Li; G. Tang; Y. Liu; Z. Yang; T. Xu, Energy Environ. Sci. 16 (2023) 430-437.
    [51]
    D.G. Kwabi; K. Lin; Y. Ji; E.F. Kerr; M.-A. Goulet; D. De Porcellinis; D.P. Tabor; D.A. Pollack; A. Aspuru-Guzik; R.G. Gordon; M.J. Aziz, Joule 2 (2018) 1894-1906.
    [52]
    B. Hu; M. Hu; J. Luo; T.L. Liu, Adv. Energy Mater. 12 (2022) 2102577.
    [53]
    Y. Ji; M.-A. Goulet; D.A. Pollack; D.G. Kwabi; S. Jin; D. De Porcellinis; E.F. Kerr; R.G. Gordon; M.J. Aziz, Adv. Energy Mater. 9 (2019) 1900039.
    [54]
    C. Debruler; B. Hu; J. Moss; J. Luo; T.L. Liu, ACS Energy Lett. 3 (2018) 663-668.
    [55]
    Y. Lu; X. Hou; L. Miao; L. Li; R. Shi; L. Liu; J. Chen, Angew. Chem. Int. Ed. 58 (2019) 7020-7024.
    [56]
    M. Gao; M. Salla; Y. Song; Q. Wang, Angew. Chem. Int. Ed. 61 (2022) e202208223.
    [57]
    J. Xu; S. Pang; X. Wang; P. Wang; Y. Ji, Joule 5 (2021) 2437-2449.
    [58]
    H. Li; H. Fan; B. Hu; L. Hu; G. Chang; J. Song, Angew. Chem. Int. Ed. 60 (2021) 26971-26977.
    [59]
    M. Hu; W. Wu; J. Luo; T.L. Liu, Adv. Energy Mater. 12 (2022) 2202085.
    [60]
    T. Janoschka; C. Friebe; M.D. Hager; N. Martin; U.S. Schubert, ChemistryOpen 6 (2017) 216-220.
    [61]
    J. Winsberg; C. Stolze; S. Muench; F. Liedl; M.D. Hager; U.S. Schubert, ACS Energy Lett. 1 (2016) 976-980.
    [62]
    Y. Zhu; F. Yang; Z. Niu; H. Wu; Y. He; H. Zhu; J. Ye; Y. Zhao; X. Zhang, J. Power Sources 417 (2019) 83-89.
    [63]
    S. Huang; H. Zhang; M. Salla; J. Zhuang; Y. Zhi; X. Wang; Q. Wang, Nat. Commun. 13 (2022) 4746.
    [64]
    L. Li; Y. Su; Y. Ji; P. Wang, J. Am. Chem. Soc. 145 (2023) 5778-5785.
    [65]
    E.W. Zhao; T. Liu; E. Jonsson; J. Lee; I. Temprano; R.B. Jethwa; A. Wang; H. Smith; J. Carretero-Gonzalez; Q. Song; C.P. Grey, Nature 579 (2020) 224-228.
    [66]
    Y. Zhang; F. Li; T. Li; M. Zhang; Z. Yuan; G. Hou; J. Fu; C. Zhang; X. Li, Energy Environ. Sci. 16 (2023) 231-240.
    [67]
    K. Lin; R. Gomez-Bombarelli; E.S. Beh; L. Tong; Q. Chen; A. Valle; A. Aspuru-Guzik; M.J. Aziz; R.G. Gordon, Nat. Energy 1 (2016) 16102.
    [68]
    S. Er; C. Suh; M.P. Marshak; A. Aspuru-Guzik, Chem. Sci. 6 (2015) 885-893.
    [69]
    J.E. Bachman; L.A. Curtiss; R.S. Assary, J. Phys. Chem. A 118 (2014) 8852-8860.
    [70]
    D.P. Tabor; R. Gomez-Bombarelli; L.C. Tong; R.G. Gordon; M.J. Aziz; A. Aspuru-Guzik, J. Mater. Chem. A 7 (2019) 12833-12841.
    [71]
    M.E. Carrington; K. Sokolowski; E. Jonsson; E.W. Zhao; A.M. Graf; I. Temprano; J.A. Mccune; C.P. Grey; O.A. Scherman, Nature 623 (2023) 949-955.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (11) PDF downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return