Volume 9 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
Run Xu, Fuxia Zhu, Liang Zou, Shuqing Wang, Yanfang Liu, Jili Hou, Chenghao Li, Kuntong Song, Lingzhao Kong, Longpeng Cui, Zhiqiang Wang. CO2 mineralization by typical industrial solid wastes for preparing ultrafine CaCO3: A review. Green Energy&Environment, 2024, 9(11): 1679-1697. doi: 10.1016/j.gee.2024.08.002
Citation: Run Xu, Fuxia Zhu, Liang Zou, Shuqing Wang, Yanfang Liu, Jili Hou, Chenghao Li, Kuntong Song, Lingzhao Kong, Longpeng Cui, Zhiqiang Wang. CO2 mineralization by typical industrial solid wastes for preparing ultrafine CaCO3: A review. Green Energy&Environment, 2024, 9(11): 1679-1697. doi: 10.1016/j.gee.2024.08.002

CO2 mineralization by typical industrial solid wastes for preparing ultrafine CaCO3: A review

doi: 10.1016/j.gee.2024.08.002
  • Mineral carbonation is a promising CO2 sequestration strategy that can utilize industrial wastes to convert CO2 into high-value CaCO3. This review summarizes the advancements in CO2 mineralization using typical industrial wastes to prepare ultrafine CaCO3. This work surveys the mechanisms of CO2 mineralization using these wastes and its capacities to synthesize CaCO3, evaluates the effects of carbonation pathways and operating parameters on the preparation of CaCO3, analyzes the current industrial application status and economics of this technology. Due to the large amount of impurities in solid wastes, the purity of CaCO3 prepared by indirect methods is greater than that prepared by direct methods. Crystalline CaCO3 includes three polymorphs. The polymorph of CaCO3 synthesized by carbonation process is determined the combined effects of various factors. These parameters essentially impact the nucleation and growth of CaCO3 by altering the CO2 supersaturation in the reaction system and the surface energy of CaCO3 grains. Increasing the initial pH of the solution and the CO2 flow rate favors the formation of vaterite, but calcite is formed under excessively high pH. Vaterite formation is favored at lower temperatures and residence time. With increased temperature and prolonged residence time, it passes through aragonite metastable phase and eventually transforms into calcite. Moreover, polymorph modifiers can decrease the surface energy of CaCO3 grains, facilitating the synthesis of vaterite. However, the large-scale application of this technology still faces many problems, including high costs, high energy consumption, low calcium leaching rate, low carbonation efficiency, and low product yield. Therefore, it is necessary to investigate ways to accelerate carbonation, optimize operating parameters, develop cost-effective agents, and understand the kinetics of CaCO3 nucleation and crystallization to obtain products with specific crystal forms. Furthermore, more studies on life cycle assessment (LCA) should be conducted to fully confirm the feasibility of the developed technologies.

     

  • loading
  • [1]
    Z. Zhang, S. Y. Pan, H. Li, J. C. Cai, A. G. Olabi, E. J. Anthony, V. Manovic, Renew. Sust. Energ. Rev. 125 (2020) 109799.
    [2]
    C. Cardenas-Escudero, V. Morales-Florez, R. Perez-Lopez, A. Santos, L. Esquivias, J. Hazard. Mater.196 (2011) 431-435.
    [3]
    H. Xie, L. Tang, Y. Wang, T. Liu, Z. Hou, J. Wang, T. Wang, W. Jiang, P. Were, Environ. Earth Sci. 75 (2016) 615.
    [4]
    W. T. Liu, L. M. Teng, S. Rohani, Z. F. Qin, B. Zhao, C. C. Xu, S. Ren, Q. C. Liu, B. Liang, Chem. Eng. J. 416 (2021) 129093.
    [5]
    Y.-Q. Niu, J.-H. Liu, C. Aymonier, S. Fermani, D. Kralj, G. Falini, C.-H. Zhou, Chem. Soc. Rev. 51 (2022) 7883-7943.
    [6]
    Q. Huang, Y. Liu, Z. Ouyang, Q. Feng, Bioactive Materials 5 (2020) 980-989.
    [7]
    C.S. Poon, P. Shen, Y. Jiang, Z. Ma, D. Xuan, Cement Concrete Res. 173 (2023) 107284.
    [8]
    D. B. Trushina, T. N. Borodina, S. Belyakov, M. N. Antipina, Mater. Today Adv. 14 (2022) 100214.
    [9]
    H. Wei, Q. Shen, Y. Zhao, D.-J. Wang, D.-F. Xu, J. Cryst. Growth 250 (2003) 516-524.
    [10]
    H. Liu, P. Lan, S. Lu, S. Wu, J. Cryst. Growth 492 (2018) 114-121.
    [11]
    T. Zheng, H. Yi, S. Zhang and C. Wang, J. Cryst. Growth 549 (2020) 125870.
    [12]
    A. R. Ibrahim, X. Zhang, Y. Hong, Y. Su, H. Wang; J. Li, Cryst. Growth Des. 14 (2014) 2733-2741.
    [13]
    A. D. Trofimov, A. A. Ivanova, M. V. Zyuzin, A. S. Timin, Pharmaceutics, 10 (2018) 167.
    [14]
    B. Rugabirwa, D. Murindababisha, Y. Li, Y. Hong, Y. Su, H. Wang, J. Li., ACS Sustainable Chem. Eng. 7 (2019) 6251-6258.
    [15]
    A. S. Schenk, B. Cantaert, Y.-Y. Kim, Y. Li, E. S. Read, M. Semsarilar, S. P. Armes, F. C. Meldrum, Chem. Materi. 26 (2014), 2703-2711.
    [16]
    J. J. De Yoreo, P. G. Vekilov, Rev. Mineral. Geochem. 54 (2003), 57-93.
    [17]
    R. Demichelis, A. Schuitemaker, N. A. Garcia, K. B. Koziara, M. De La Pierre, P. Raiteri, J. D. Gale, Annu. Rev. Materi. Res. 48 (2018), 327-352.
    [18]
    B. Wang, Z. Pan, Z. Du, H. Cheng, F. Cheng, J. Hazard. Mater. 369 (2019) 236-243.
    [19]
    J. Skubiszewska-Zieba, B. Charmas, H. Waniak-Nowicka, Adsorpt. Sci. Technol. 35 (2017) 668-676.
    [20]
    X. Huang, J. Zhang, L. Zhang, Constr. Build. Mater. 411 (2024) 134603.
    [21]
    W. Li, Y. Huang, T. Wang, M. Fang, Y. Li, J. Clean. Prod. 363 (2022) 132463.
    [22]
    F. Zhu, L. Cui, Y. Liu, L. Zou, J. Hou, C. Li, G. Wu, R. Xu, B. Jiang, Z. Wang, Sustainability 16 (2024) 81.
    [23]
    B. Wu, H. Wang, C. Li, Y. Gong, Y. Wang, Sustainability 15 (2023) 9629.
    [24]
    Z. Fei, Q. Bao, X. Zheng, L. Zhang, X. Wang, Y. Wei, S. Yan, L. Ji, J. Clean. Prod. 338 (2022) 130565.
    [25]
    F.J. Doucet, Miner. Eng. 23 (2010) 262-269.
    [26]
    K. Cui, H. Mao, Y. Zhang, J. Wang, F. Shen, Ceram. Int. 48 (2022) 35555-35567.
    [27]
    K. Cui, J. Wang, H. Wang, Y. Zhang, T. Fu, Steel Res. Int. 93 (2022) 2200266.
    [28]
    Y.-N. Sheen, D.-H. Le, T.-H. Sun, Constr. Build. Mater. 101 (2015) 268-276.
    [29]
    G. Wang, Y. Wang, Z. Gao, J. Hazard. Mater. 184 (2010) 555-560.
    [30]
    I. Arribas, I. Vegas, J. T. San-Jose, J. M. Manso, Mater. Design 63 (2014) 168-176.
    [31]
    B. Das, S. Prakash, P. S. R. Reddy, V. N. Misra, Resour. Conserv. Recyc. 50 (2007) 40-57.
    [32]
    H. Ding, H. Zheng, X. Liang, L. Ren, J. Clean. Prod. 244 (2020) 118953.
    [33]
    Y. Luo, D. He, Environ. Sci. Pollut. R. 28 (2021) 49383-49409.
    [34]
    J. F. Young, R. L. Berger, J. Breese, J. Am. Ceram. Soc. 57 (1974) 394-397.
    [35]
    S. Zhang, Z. Ghouleh, A. Mucci, O. Bahn, R. Provencal, Y. Shao, J. Clean. Prod. 342 (2022) 130948.
    [36]
    E. Ren, S. Tang, C. Liu, H. Yue, C. Li, B. Liang, Greenh. Gases 10 (2020) 436-448.
    [37]
    Y.-R. Yi, Y. Lin, Y.-C. Du, S.-Q. Bai, Z.-L. Ma, Y.-G. Chen, Constr. Build. Mater. 276 (2021) 122235.
    [38]
    B. J. Zhan, D. X. Xuan, C. S. Poon, C. J. Shi, Cement Concrete Comp. 97 (2019) 78-88.
    [39]
    E. R. Bobicki, Q. Liu, Z. Xu, H. Zeng, Progr. Energ. Combust. 38 (2012) 302-320.
    [40]
    Z. Chen, Z. Cang, F. Yang, J. Zhang, L. Zhang, J. CO2 Util. 54 (2021) 101738.
    [41]
    L. Liu, M. Gan, X. Fan, Z. Sun, J. Wei, J. Li, Z. Ji, J. Environ. Chem. Eng. 11 (2023) 110655.
    [42]
    A. Azdarpour, M. Asadullah, R. Junin, M. A. Manan, H. Hamidi, A. R. M. Daud, Energy Procedia 61 (2014) 2783-2786.
    [43]
    T. Murakami, Y. Sugano, T. Narushima, Y. Iguchi, C. Ouchi, ISIJ Int. 51 (2011) 901-905.
    [44]
    Y. W. Chiang, R. M. Santos, J. Elsen, B. Meesschaert, J. A. Martens, T. Van Gerven, Chem. Eng. J. 249 (2014) 260-269.
    [45]
    S. Yadav, A. Mehra, Environ. Sci. Pollut. R. 28 (2021) 12202-12231.
    [46]
    H. Jo, M.-G. Lee, J. Park, K.-D. Jung, Energy 120 (2017) 884-894.
    [47]
    D. Abhilash, P. Meshram, S. Sarkar, T.Venugopalan, Miner. Metall. Proc. 34 (2017).
    [48]
    X. Zheng, L. Ji, M. Liu, H. Zhai, K. Li, Q. He, S. Yan, Chem. Eng. J. 480 (2024) 148037.
    [49]
    H. Tong, W. Ma; L. Wang; P. Wan; J. Hu; L. Cao, Biomaterials 25 (2014) 3923-3929.
    [50]
    M. Mun, H. Cho, Energy Procedia 37 (2013) 6999-7005.
    [51]
    W. Bao, H. Li, Y. Zhang, Ind. Eng. Chem. Res. 49 (2010) 2055-2063.
    [52]
    S. Eloneva, A. Said, C.-J. Fogelholm, R. Zevenhoven, Appl. Energ. 90 (2012) 329-334.
    [53]
    M. Owais, M. Jarvinen, P. Taskinen, A. Said, J. CO2 Util. 31 (2019) 1-7.
    [54]
    S. Kodama, T. Nishimoto, N. Yamamoto, K. Yogo, K. Yamada, Energy 33 (2008) 776-784.
    [55]
    S. Eloneva, S. Teir, J. Salminen, C.-J. Fogelholm, R. Zevenhoven, Ind. Eng. Chem. Res. 47 (2008) 7104-7111.
    [56]
    Y. Sun, M.-S. Yao, J.-P. Zhang, G. Yang, Chem. Eng. J. 173 (2011) 437-445.
    [57]
    Z. Tong, G. Ma, D. Zhou, G. Yang, C. Peng, Sci. Rep. 9 (2019) 7676.
    [58]
    S. Teir, S. Eloneva, C.-J. Fogelholm, R. Zevenhoven, Energy 32 (2007) 528-539.
    [59]
    H. Sadeghi Ghari, A. Jalali-Arani, Appl. Clay Sci. 119 (2016) 348-357.
    [60]
    Q. Xu, Z. Gao, D. Zhang, Q. Huang, J. Liu, B. Lu, R. Jiang, J. Mater. Civil Eng. 36 (2024) 04023504.
    [61]
    X. Song, Y. Tuo, Y. Liang, Z. Tang, M. Li, X. Hua, R. Yang, X. Bu, X. Luo, J. Environ. Chem. Eng. 11 (2023) 111583.
    [62]
    J. Yao, Q. Chen, L. Zeng, W. Ding, Particuology 90 (2024) 1-9.
    [63]
    Y. Ding, J. Zhang, B. Wang, Y. Guo, F. Xue, F. Cheng, J. Synth. Cryst. 52 (2023) 710-720. (in Chinese).
    [64]
    B. Guo, T. Zhao, F. Sha, F. Zhang, Q. Li, J. Zhao, J. Zhang, J. CO2 Util. 18 (2017) 23-29.
    [65]
    T. Zhang, G. Chu, J. Lyu, Y. Cao, W. Xu, K. Ma, L. Song, H. Yue, B. Liang, Chinese J. Chem. Eng. 43 (2022) 86-98.
    [66]
    Y. Wang, B. Ye, Z. Hong, Y. Wang, M. Liu, J. Clean. Prod. 253 (2020) 119930.
    [67]
    L. Ma, T. Yang, Y. Wu, X. Yue, J. Yang, S. Zhang, Q. Li, J. Zhang, Korean J. Chem. Eng. 36 (2019) 1432-1440.
    [68]
    M. Altiner, Arab. J. Chem. 12 (2019) 531-540.
    [69]
    S. Mao, Y. Liu, T.-A. Zhang, X. Li, Mater. Res. Express 7 (2020) 115003.
    [70]
    X. Wang, M. M. Maroto-Valer, Fuel 90 (2011) 1229-1237.
    [71]
    J. Hu, W. Liu, L. Wang, Q. Liu, F. Chen, H. Yue, B. Liang, L. Lu, Y. Wang, G. Zhang, C. Li, J. Energy Chem. 26 (2017) 927-935.
    [72]
    X. Zheng, J. Liu, Y. Wei, K. Li, H. Yu, X. Wang, L. Ji, S. Yan, Chem. Eng. J. 440 (2022) 135900.
    [73]
    Y. I. Svenskaya, H. Fattah, O. A. Inozemtseva, A. G. Ivanova, S. N. Shtykov, D. A. Gorin, B. V. Parakhonskiy, Cryst. Growth Des. 18 (2018) 331-337.
    [74]
    N. Cheng, M. F. Zhou, P. Y. Chen, C. Z. Li, H. B. Jiang, L. Zhang, Chinese J. Process Eng. 17 (2017) 412-419. (in Chinese).
    [75]
    J. A. M. van der Houwen, G. Cressey, B. A. Cressey, E. Valsami-Jones, J. Cryst. Growth 249 (2003) 572-583.
    [76]
    S. F. Chen, S. H. Yu, J. Jiang; F. Li, Y. Liu, Chem. Mater. 18 (2006) 115-122.
    [77]
    K. Song, Y.-N. Jang, W. Kim, M.G. Lee, D. Shin, J.-H. Bang, C.W. Jeon, S.C. Chae, Chem. Eng. J. 213 (2012) 251-258.
    [78]
    D. Konopacka-Lyskawa, B. Koscielska, M. Lapinski, JOM 71 (2019) 1041-1048.
    [79]
    Z. Wang, L. Cui, Y. Liu, J. Hou, H. Li, L. Zou, F. Zhu, Front. Env. Sci. Eng. 18 (2023) 12.
    [80]
    D. Konopacka-Lyskawa, B. Koscielska, J. Karczewski, A. Golabiewska, Mater. Chem. Phys. 193 (2017) 13-18.
    [81]
    W. Li, G. Chen, F. Zhang, J. Sun, Sep. Purif. Technol. 317 (2023) 123932.
    [82]
    B. Wang, Z. Pan, H. Cheng, Z. Zhang, F. Cheng, J. Clean. Prod. 302 (2021) 126930.
    [83]
    M. Altiner, Int. J. Coal Prep. Util. 39 (2018) 1-19.
    [84]
    W. Y. Tan, W. H. Fan, H. Y. Lin, Z. X. Zhang, Y. K. Zhu, Waste Manage. Res. 35 (2017) 1296-1301.
    [85]
    M. G. Lee, Y. N. Jang, K. W. Ryu, W. Kim, J.-H. Bang, Energy 47 (2012) 370-377.
    [86]
    X. Liu, B. Wang, Z. Zhang, Z. Pan, H. Cheng, F. Cheng, Environ. Chem. Lett. 20 (2022) 2261-2269.
    [87]
    A. Azdarpour, M. Asadullah, R. Junin, E. Mohammadian, H. Hamidi, A. R. M. Daud, M. Manan, Fuel Process. Technol. 130 (2015) 12-19.
    [88]
    K.-M. Choi, K. Kuroda, Cryst. Growth Des. 12 (2012) 887-893.
    [89]
    H. Zhao, H. Li, W. Bao, C. Wang, S. Li, W. Lin, J. CO2 Util. 11 (2015) 10-19.
    [90]
    A. Azdarpour, M. Asadullah, R. Junin, M. Manan, H. Hamidi, E. Mohammadian, Fuel Process. Technol. 126 (2014) 429-434.
    [91]
    M. G. Lee, K. W. Ryu, S. C. Chae, Y. N. Jang, Environ. Technol. 36 (2015) 106-114.
    [92]
    M.-G. Lee, D. Kang, H. Jo, J. Park, J. Mater. Cycles. Waste 18 (2016) 407-412.
    [93]
    K. Song, Y.-N. Jang, W. Kim, M. G. Lee, D. Shin, J.-H. Bang, C. W. Jeon, S. C. Chae, Energy 65 (2014) 527-532.
    [94]
    K. Song, W. Kim, J.-H. Bang, S. Park, C. W. Jeon, Mater. Design 83 (2015) 308-313.
    [95]
    W. Ding, Q. Chen, H. Sun, T. Peng, J. CO2 Util. 34 (2019) 507-515.
    [96]
    H. Cheng, X. Wang, B. Wang, J. Zhao, Y. Liu, F. Cheng, J. Cryst. Growth 469 (2017) 97-105.
    [97]
    J. Luo, F. Kong, X. Ma, Cryst. Growth Des. 16 (2016) 728-736.
    [98]
    Y. Lai, L. Chen, W. Bao, Y. Ren, Y. Gao, Y. Yin, Y. Zhao, Cryst. Growth Des. 15 (2015) 1194-1200.
    [99]
    M. Altiner, S. Top, B. Kaymakoglu, I.Y. Seckin, H. Vapur, J. CO2 Util. 29 (2019) 117-125.
    [100]
    K. Song, W. Kim, S. Park, J.-H. Bang, C.W. Jeon, J.-W. Ahn, Chem. Eng. J. 301 (2016) 51-57.
    [101]
    B. Wang, Z. Pan, H. Cheng, Y. Guan, Z. Zhang, F. Cheng, Environ. Chem. Lett. 18 (2020) 1369-1377.
    [102]
    A. Lachehab, O. Mertah, A. Kherbeche, H. Hassoune, Materials Science for Energy Technologies 3 (2020) 611-625.
    [103]
    D. Yelatontsev, Technology Audit and Production Reserves 3 (2021) 10-13.
    [104]
    M. Contreras, R. Perez-Lopez, M.J. Gazquez, V. Morales-Florez, A. Santos, L. Esquivias, J.P. Bolivar, Waste Manage. 45 (2015) 412-419.
    [105]
    L. Ji, H. Yu, K. Li, B. Yu, M. Grigore, Q. Yang, X. Wang, Z. Chen, M. Zeng, S. Zhao, Appl. Energ. 225 (2018) 356-366.
    [106]
    B. Yu, H. Yu, K. Li, L. Ji, Q. Yang, X. Wang, Z. Chen, M. Megharaj, Environ. Sci. Technol. 52 (2018) 13629-13637.
    [107]
    G. Gadikota, Nat. Rev. Chem. 4 (2020) 78-89.
    [108]
    M. Liu, G. Gadikota, Energy Fuels 33 (2019) 1722-1733.
    [109]
    L. Ji, X. Zheng, L. Zhang, L. Feng, K. Li, H. Yu, S. Yan, Chem. Eng. J. 430 (2022) 133118.
    [110]
    H.-J. Ho, A. Iizuka, E. Shibata, J. Environ. Manage. 288 (2021) 112411.
    [111]
    T. K. Choo, B. Etschmann, C. Selomulya, L. Zhang, Energy Fuels 30 (2016) 3269-3280.
    [112]
    T. Hosseini, N. Haque, C. Selomulya, L. Zhang, Appl. Energ. 175 (2016) 54-68.
    [113]
    H.-J. Ho, A. Iizuka, E. Shibata, T. V. Ojumu, J. Environ. Chem. Eng. 10 (2022) 108269.
    [114]
    L. He, D. Yu, W. Lv, J. Wu, M. Xu, Ind. Eng. Chem. Res. 52 (2013) 15138-15145.
    [115]
    X. Wang, M. M. Maroto-Valer, Energy 51 (2013) 431-438.
    [116]
    X. Zheng, J. Liu, Y. Wang, Y. Wang, L. Ji, S. Yan, Chem. Eng. J. 459 (2023) 141536.
    [117]
    A. Kai, K. Fujikawa, T. Miki, Jpn. Appl. Phys. 41 (2002) 439.
    [118]
    R. Marin Rivera, T. Van Gerven, J. CO2 Util. 41 (2020) 101241.
    [119]
    D. Fernandes, W. Conway, X. Wang, R. Burns, G. Lawrance, M. Maeder, G. Puxty, J. Chem. Thermodyn. 51 (2012) 97-102.
    [120]
    L. Ji, H. Yu, B. Yu, K. Jiang, M. Grigore, X. Wang, S. Zhao, K. Li, Chem. Eng. J. 352 (2018) 151-162.
    [121]
    Q. Yang, G. Puxty, S. James, M. Bown, P. Feron, W. Conway, Energy Fuels 30 (2016) 7503-7510.
    [122]
    N. Wada, N. Horiuchi, M. Nakamura, K. Nozaki, A. Nagai, K. Yamashita, Cryst. Growth Des. 18 (2018) 872-878.
    [123]
    Y. Huang, X. Zheng, Y. Wei, Q. He, S. Yan, L. Ji, Chem. Eng. J. 450 (2022) 138121.
    [124]
    D. Madhav, B. Buffel, F. Desplentere, P. Moldenaers, V. Vandeginste, Fuel 345 (2023) 128157.
    [125]
    K. Chen, S. Han, F. Meng, L. Lin, J. Li, Y. Gao, W. Qin, E. Hu, J. Jiang, Chem. Eng. J. 481 (2024) 148392.
    [126]
    X. Shao, B. Qin, Q. Shi, Y. Yang, Z. Ma, Y. Xu, M. Hao, Z. Jiang, W. Jiang, Fuel 334 (2023) 126378.
    [127]
    L. Ji, H. Yu, R. Zhang, D. French, M. Grigore, B. Yu, X. Wang, J. Yu, S. Zhao, Fuel Process. Technol. 188 (2019) 79-88.
    [128]
    G. Montes-Hernandez, R. Perez-Lopez, F. Renard, J.M. Nieto, L. Charlet, J. Hazard. Mater. 161 (2009) 1347-1354.
    [129]
    Y. Sun, V. Parikh, L. Zhang, J. Hazard. Mater. 209-210 (2012) 458-466.
    [130]
    K. R. Senadeera, T. K. Jayasinghe, P. M. Jayasundara, G. Nanayakkara, M. Rathnayake, MERCON 2020: 6th International Multidisciplinary Moratuwa Engineering Research Conference, Mercon, 2020, pp. 119-123.
    [131]
    Y. Zhong, T. Shi, Q. Chen, X. Yang, D. Xu, Z. Zhang, X. Wang, B. Zhong, Chinese J. Chem. Eng. 28 (2020) 208-215.
    [132]
    D. Gebauer, Minerals 8 (2018) 179.
    [133]
    A. Said, T. Laukkanen, M. Jarvinen, Appl. Energ. 177 (2016) 602-611.
    [134]
    A. Iizuka, T. Sasaki, M. Honma, H. Yoshida, Y. Hayakawa, Y. Yanagisawa, A. Yamasaki, Chem. Eng. Commun. 204 (2017) 79-85.
    [135]
    S. Park, Y. Ahn, S. Lee, J. Choi, J. Hazard. Mater. 403 (2021) 123862.
    [136]
    H. Xie, H. Yue, J. Zhu, B. Liang, C. Li, Y. Wang, L. Xie, X. Zhou, Engineering 1 (2015) 150-157.
    [137]
    K. Pan, H. Li, C. Wang, W. Bao, K. Huang, D. Liao, Adv. Mater. Res. 878 (2014) 244-253.
    [138]
    China Powder Network, Breakthrough in Carbonation Utilization Technology of Industrial Solid Waste in China. http://www.cnpowder.com.cn/news/32015.html,2024 (accessed 16 July 2024).
    [139]
    A. Sanna, M. Uibu, G. Caramanna, R. Kuusik, M. Maroto-Valer, Chem. Soc. Rev. 43 (2014) 8049-8080.
    [140]
    S. J. Gerdemann, W. K. O’Connor, D. C. Dahlin, L. R. Penner, H. Rush, Environ. Sci. Technol. 41 (2007) 2587-2593.
    [141]
    R. D. Balucan, B. Z. Dlugogorski, E. M. Kennedy, I. V. Belova, G. E. Murch, Int. J. Greenh. Gas Con. 17 (2013) 225-239.
    [142]
    A. Fedorockova, M. Hreus, P. Raschman, G. Sucik, Miner. Eng. 32 (2012) 1-4.
    [143]
    J. Li, M. Hitch, Int. Biodeter. Biodegr. 128 (2018) 63-71.
    [144]
    J. K. Stolaroff, G. V. Lowry, D. W. Keith, Energ. Convers. Manage. 46 (2005) 687-699.
    [145]
    W. J. J. Huijgen, R. N. J. Comans, G. J. Witkamp, Energ. Convers. Manage. 48 (2007) 1923-1935.
    [146]
    S. Y. Pan, A. Chiang, E. E. Chang, Y. P. Lin, H. Kim, P. C. Chiang, Aerosol Air Qual. Res. 15 (2015) 1072-1091.
    [147]
    S. Teir, R. Kuusik, C. J. Fogelholm, R. Zevehoven, Int. J. Miner. Process. 85 (2007) 1-15.
    [148]
    S. Teir, S. Eloneva, C. J. Fogelholm, R. Zevehoven, Appl. Energ. 86 (2009) 214-218.
    [149]
    O. Rahmani, M. Tyrer, R. Junin, RSC Adv. 4 (2014) 45548-45557.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (6) PDF downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return