Turn off MathJax
Article Contents
Sue-Faye Ng, Joel Jie Foo, Peipei Zhang, Steven Hao Wan Kok, Lling-Lling Tan, Binghui Chen, Wee-Jun Ong. 2D/2D homojunction-mediated charge separation: Synergistic effect of crystalline C3N5 and g-C3N4 via electrostatic self-assembly for photocatalytic hydrogen and benzaldehyde production. Green Energy&Environment. doi: 10.1016/j.gee.2024.06.008
Citation: Sue-Faye Ng, Joel Jie Foo, Peipei Zhang, Steven Hao Wan Kok, Lling-Lling Tan, Binghui Chen, Wee-Jun Ong. 2D/2D homojunction-mediated charge separation: Synergistic effect of crystalline C3N5 and g-C3N4 via electrostatic self-assembly for photocatalytic hydrogen and benzaldehyde production. Green Energy&Environment. doi: 10.1016/j.gee.2024.06.008

2D/2D homojunction-mediated charge separation: Synergistic effect of crystalline C3N5 and g-C3N4 via electrostatic self-assembly for photocatalytic hydrogen and benzaldehyde production

doi: 10.1016/j.gee.2024.06.008
  • Homojunction engineering is a promising modification strategy to improve charge carrier separation and photocatalytic performance of carbon nitrides. Leveraging intrinsic heptazine/triazine phase and face-to-face contact, crystalline C3N5 (CC3N5) was combined with protonated g-C3N4 (pgCN) through electrostatic self-assembly to achieve robust 2D/2D homojunction interfaces. The highest photocatalytic performance was obtained through crystallinity and homojunction engineering, by controlling the pgCN:CC3N5 ratio. The 25:100 pgCN:CC3N5 homojunction (25CgCN) had the highest hydrogen production (1409.51 µmol h-1) and apparent quantum efficiency (25.04%, 420 nm), 8-fold and 180-fold higher than CC3N5 and pgCN, respectively. This photocatalytic homojunction improves benzaldehyde and hydrogen production activity, retaining 89% performance after 3 cycles (12 h ) on a 3D-printed substrate. Electron paramagnetic resonance demonstrated higher ·OH-, ·O2- and hole production of irradiated 25CgCN, attributed to crystallinity and homojunction interaction. Thus, electrostatic self-assembly to couple CC3N5 and pgCN in a 2D/2D homojunction interface ameliorates the performance of multifunctional solar-driven applications.

     

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (45) PDF downloads(1) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return