Volume 9 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
Wenhao Jing, Zihao Jiao, Mengmeng Song, Ya Liu, Liejin Guo. An active learning workflow for predicting hydrogen atom adsorption energies on binary oxides based on local electronic transfer features. Green Energy&Environment, 2024, 9(10): 1489-1496. doi: 10.1016/j.gee.2024.06.007
Citation: Wenhao Jing, Zihao Jiao, Mengmeng Song, Ya Liu, Liejin Guo. An active learning workflow for predicting hydrogen atom adsorption energies on binary oxides based on local electronic transfer features. Green Energy&Environment, 2024, 9(10): 1489-1496. doi: 10.1016/j.gee.2024.06.007

An active learning workflow for predicting hydrogen atom adsorption energies on binary oxides based on local electronic transfer features

doi: 10.1016/j.gee.2024.06.007
  • Machine learning combined with density functional theory (DFT) enables rapid exploration of catalyst descriptors space such as adsorption energy, facilitating rapid and effective catalyst screening. However, there is still a lack of models for predicting adsorption energies on oxides, due to the complexity of elemental species and the ambiguous coordination environment. This work proposes an active learning workflow (LeNN) founded on local electronic transfer features (e) and the principle of coordinate rotation invariance. By accurately characterizing the electron transfer to adsorption site atoms and their surrounding geometric structures, LeNN mitigates abrupt feature changes due to different element types and clarifies coordination environments. As a result, it enables the prediction of *H adsorption energy on binary oxide surfaces with a mean absolute error (MAE) below 0.18 eV. Moreover, we incorporate local coverage (θl) and leverage neutral network ensemble to establish an active learning workflow, attaining a prediction MAE below 0.2 eV for 5419 multi-*H adsorption structures. These findings validate the universality and capability of the proposed features in predicting *H adsorption energy on binary oxide surfaces.

     

  • loading
  • [1]
    D. Hansora, J. W. Yoo, R. Mehrotra, W. J. Byun, D. Lim, Y. K. Kim, E. Noh, H. Lim, J.-W. Jang, S. I. Seok, J. S. Lee, Nat. Energy, 9 (2024) 272-284.
    [2]
    C. Pornrungroj, A. B. Mohamad Annuar, Q. Wang, M. Rahaman, S. Bhattacharjee, V. Andrei, E. Reisner, Nat. Water., 1 (2023) 952-960.
    [3]
    W. Zhang, M. Yu, T. Liu, M. Cong, X. Liu, H. Yang, Y. Bai, Q. Zhu, S. Zhang, H. Gu, X. Wu, Z. Zhang, Y. Wu, H. Tian, X. Li, W.-H. Zhu, A. I. Cooper, Nat. Synth., (2024).
    [4]
    H. Xu, D. Cheng, D. Cao, X. C. Zeng, Nat. Catal., 7 (2024) 207-218.
    [5]
    Y. Li, H. Zhou, S. Cai, D. Prabhakaran, W. Niu, A. Large, G. Held, R. A. Taylor, X.-P. Wu, S. C. E. Tsang, Nat. Catal., 7 (2024) 77-88.
    [6]
    W. Jing, G. He, S. Bai, F. Wang, Y. Liu, L. Guo, ACS Mater. Lett., (2024) 1347-1355.
    [7]
    B.-H. Lee, S. Park, M. Kim, A. K. Sinha, S. C. Lee, E. Jung, W. J. Chang, K.-S. Lee, J. H. Kim, S.-P. Cho, H. Kim, K. T. Nam, T. Hyeon, Nat. Mater., 18 (2019) 620-626.
    [8]
    X. Diao, Y. Diao, Y. Tang, G. Zhao, Q. Gu, Y. Xie, Y. Shi, P. Zhu, L. Zhang, Sci. Rep., 12 (2022) 12633.
    [9]
    H. Xin, A. Holewinski, S. Linic, ACS Catal., 2 (2012) 12-16.
    [10]
    A. A. Peterson, J. K. Noerskov, J. Phys. Chem. Lett., 3 (2012) 251-258.
    [11]
    P. G. Ghanekar, S. Deshpande, J. Greeley, Nat. Commun., 13 (2022) 5788.
    [12]
    S. Bai, H. Qiu, M. Song, G. He, F. Wang, Y. Liu, L. Guo, eScience, 2 (2022) 428-437.
    [13]
    Y. Yin, W. Jing, H. Qiu, F. Wang, Y. Liu, L. Guo, EES Catal., 1 (2023) 755-764.
    [14]
    M. Song, Z. Jiao, W. Jing, Y. Liu, L. Guo, J. Phys. Chem. Lett., 13 (2022) 4434-4440.
    [15]
    Z. Jiao, M. Song, W. Jing, Y. Liu, L. Guo, J. Phys. Chem. Lett., 14 (2023) 6009-6017.
    [16]
    Y. Liu, J. Ding, F. Li, X. Su, Q. Zhang, G. Guan, F. Hu, J. Zhang, Q. Wang, Y. Jiang, B. Liu, H. B. Yang, Adv. Mater., 35 (2023) 2207114.
    [17]
    J. Liu, C. Tang, Z. Ke, R. Chen, H. Wang, W. Li, C. Jiang, D. He, G. Wang, X. Xiao, Adv. Energy Mater., 12 (2022) 2103301.
    [18]
    D.-Y. Kuo, E. Nishiwaki, R. A. Rivera-Maldonado, B. M. Cossairt, ACS Catal., 13 (2023) 287-295.
    [19]
    Z. W. Chen, J. Li, P. Ou, J. E. Huang, Z. Wen, L. Chen, X. Yao, G. Cai, C. C. Yang, C. V. Singh, Q. Jiang, Nat. Commun., 15 (2024) 359.
    [20]
    F. Liu, C. Shi, X. Guo, Z. He, L. Pan, Z.-F. Huang, X. Zhang, J.-J. Zou, Adv. Sci., 9 (2022) 2200307.
    [21]
    A. B. Laursen, A. S. Varela, F. Dionigi, H. Fanchiu, C. Miller, O. L. Trinhammer, J. Rossmeisl, S. Dahl, J. Chem. Educ., 89 (2012) 1595-1599.
    [22]
    T. Ma, Z. Jiao, H. Qiu, F. Wang, Y. Liu, L. Guo, eScience, (2024) 100246.
    [23]
    T. Zhang, B. Yuan, W. Wang, J. He, X. Xiang, Angew. Chem., Int. Ed., 62 (2023) e202302096.
    [24]
    O. Pique, Q. H. Low, A. D. Handoko, B. S. Yeo, F. Calle-Vallejo, Angew. Chem., Int. Ed., 60 (2021) 10784-10790.
    [25]
    Y. Qiao, W. Lai, K. Huang, T. Yu, Q. Wang, L. Gao, Z. Yang, Z. Ma, T. Sun, M. Liu, C. Lian, H. Huang, ACS Catal., 12 (2022) 2357-2364.
    [26]
    K. Tran, Z. W. Ulissi, Nat. Catal., 1 (2018) 696-703.
    [27]
    L. Chanussot, A. Das, S. Goyal, T. Lavril, M. Shuaibi, M. Riviere, K. Tran, J. Heras-Domingo, C. Ho, W. Hu, A. Palizhati, A. Sriram, B. Wood, J. Yoon, D. Parikh, C. L. Zitnick, Z. Ulissi, ACS Catal., 11 (2021) 6059-6072.
    [28]
    K. Tran, W. Neiswanger, K. Broderick, E. Xing, J. Schneider, Z. W. Ulissi, J. Chem. Phys., 154 (2021).
    [29]
    R. Pederson, B. Kalita, K. Burke, Nat. Rev. Phys., 4 (2022) 357-358.
    [30]
    X. Zhang, Y. Tian, L. Chen, X. Hu, Z. Zhou, J. Phys. Chem. Lett., 13 (2022) 7920-7930.
    [31]
    L. Fiedler, K. Shah, M. Bussmann, A. Cangi, Phys. Rev. Mater., 6 (2022) 040301.
    [32]
    S. Back, J. Yoon, N. Tian, W. Zhong, K. Tran, Z. W. Ulissi, J. Phys. Chem. Lett., 10 (2019) 4401-4408.
    [33]
    J. A. Esterhuizen, B. R. Goldsmith, S. Linic, Chem Catal., 1 (2021) 923-940.
    [34]
    D. Chen, C. Shang, Z.-P. Liu, npj Comput. Mater., 9 (2023) 2.
    [35]
    A. Fujishima, K. Honda, Nature, 238 (1972) 37-38.
    [36]
    L. Pan, J. H. Kim, M. T. Mayer, M.-K. Son, A. Ummadisingu, J. S. Lee, A. Hagfeldt, J. Luo, M. Gratzel, Nat. Catal., 1 (2018) 412-420.
    [37]
    Z. Kang, H. Si, S. Zhang, J. Wu, Y. Sun, Q. Liao, Z. Zhang, Y. Zhang, Adv. Funct. Mater., 29 (2019) 1808032.
    [38]
    S. Back, K. Tran, Z. W. Ulissi, ACS Catal., 9 (2019) 7651-7659.
    [39]
    C. F. Dickens, J. H. Montoya, A. R. Kulkarni, M. Bajdich, J. K. Noerskov, Surf. Sci., 681 (2019) 122-129.
    [40]
    J. Klicpera, F. Becker, S. Gunnemann, GemNet: Universal Directional Graph Neural Networks for Molecules, Neural Information Processing Systems, 2021.
    [41]
    J. Klicpera, J. Gross, S. Gunnemann, ArXiv, abs/2003.03123 (2020).
    [42]
    J.-C. Liu, X.-L. Ma, Y. Li, Y.-G. Wang, H. Xiao, J. Li, Nat. Commun., 9 (2018) 1610.
    [43]
    S. Bhattacharjee, U. V. Waghmare, S.-C. Lee, Sci. Rep., 6 (2016) 35916.
    [44]
    K. Tran, W. Neiswanger, J. Yoon, Q. Zhang, E. Xing, Z. W. Ulissi, Mach. learn: sci. technol, 1 (2020) 025006.
    [45]
    Y. Yang, O. A. Jimenez-Negron, J. R. Kitchin, J. Chem. Phys., 154 (2021).
    [46]
    H. Qi, F. Wang, H. Wang, J. Comput. Graphical Stat., 32 (2023) 1348-1360.
    [47]
    Y. Zhong, X. Kong, Z. Song, Y. Liu, L. Peng, L. Zhang, X. Luo, J. Zeng, Z. Geng, Nano Letters, 22 (2022) 2554-2560.
    [48]
    R. Yang, J. Duan, P. Dong, Q. Wen, M. Wu, Y. Liu, Y. Liu, H. Li, T. Zhai, Angew. Chem., Int. Ed., 61 (2022) e202116706.
    [49]
    T. Ma, H. Cao, S. Li, S. Cao, Z. Zhao, Z. Wu, R. Yan, C. Yang, Y. Wang, P. A. van Aken, L. Qiu, Y.-G. Wang, C. Cheng, Adv. Mater., 34 (2022) 2206368.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (55) PDF downloads(5) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return