Citation: | Kezhen Qi, Shu-yuan Liu, Yingjie Zhang, Hui Zhang, Vadim Popkov, Oksana Almjasheva. CO2 electrolysis to formic acid for carbon neutralization. Green Energy&Environment, 2024, 9(9): 1333-1335. doi: 10.1016/j.gee.2024.04.011 |
To avoid carbonate precipitation for CO2 electrolysis, developing CO2 conversion in an acid electrolyte is viewed as an ultimately challenging technology. In Nature, Xia et al. recently explored a proton-exchange membrane system for reducing CO2 to formic acid with a Pb-PbSO4 composite catalyst derived from waste lead-acid batteries based on the lattice carbon activation mechanism. Up to 93% Faradaic efficiency was realized when formic acid was produced by this technology.
[1] |
J. Zhang, C. Guo, S. Fang, X. Zhao, L. Li, H. Jiang, Z. Liu, Z. Fan, W. Xu, J. Xiao, M. Zhong. Nat. Commun. 14(2023)1298.
|
[2] |
S. Fang, M. Rahaman, J. Bharti, E. Reisner, M. Robert, G.A. Ozin, Y.H. Hu. Nat. Rev. Methods Primers. 3(2023)61.
|
[3] |
J. Yang, C.-K. Sou, Y. Lu. Green Energy Environ.(2023) doi: 10.1016/j.gee.2023.10.002.
|
[4] |
Z. Tan, J. Zhang, Y. Yang, J. Zhong, Y. Zhao, J. Hu, B. Han, Z. Chen. J. Am. Chem. Soc. 145(2023)21983-21990.
|
[5] |
X. Yang, H. Ding, S. Li, S. Zheng, J.-F. Li, F. Pan. J. Am. Chem. Soc. 146(2024)5532-5542.
|
[6] |
J.A. Gauthier, Z. Lin, M. Head-Gordon, A.T. Bell. ACS Energy Lett. 7(2022)1679-1686.
|
[7] |
Z. Jiang, Z. Zhang, H. Li, Y. Tang, Y. Yuan, J. Zao, H. Zheng, Y. Liang. Adv. Energy Mater. 13(2022)2203603.
|
[8] |
Q. Hao, D.-X. Liu, H.-X. Zhong, Q. Tang, J.-M. Yan. Chem. Catal. 3(2023)10542.
|
[9] |
T. Zhang, J. Zhou, T. Luo, J.Q. Lu, Z. Li, X. Weng, F. Yang. Chem. Eur. J. 29(2023) e202301455.
|
[10] |
W. Fang, W. Guo, R. Lu, Y. Yan, X. Liu, D. Wu, F.M. Li, Y. Zhou, C. He, C. Xia, H. Niu, S. Wang, Y. Liu, Y. Mao, C. Zhang, B. You, Y. Pang, L. Duan, X. Yang, F. Song, T. Zhai, G. Wang, X. Guo, B. Tan, T. Yao, Z. Wang, B.Y. Xia. Nature. 626(2024)86-91.
|