Turn off MathJax
Article Contents
Qigao Han, Yaqing Guo, Fuhe Wang, Xuechun Lou, Fengqian Wang, Jun Zhong, Jinqiao Du, Jie Tian, Weixin Zhang, Shun Tang, Shijie Cheng, Yuancheng Cao. Interfacial Modulation of Nano Li7La3Zr2O12 Composite Electrolytes Prepared by Solvent-free Method. Green Energy&Environment. doi: 10.1016/j.gee.2024.04.009
Citation: Qigao Han, Yaqing Guo, Fuhe Wang, Xuechun Lou, Fengqian Wang, Jun Zhong, Jinqiao Du, Jie Tian, Weixin Zhang, Shun Tang, Shijie Cheng, Yuancheng Cao. Interfacial Modulation of Nano Li7La3Zr2O12 Composite Electrolytes Prepared by Solvent-free Method. Green Energy&Environment. doi: 10.1016/j.gee.2024.04.009

Interfacial Modulation of Nano Li7La3Zr2O12 Composite Electrolytes Prepared by Solvent-free Method

doi: 10.1016/j.gee.2024.04.009
  • Solid-state batteries (SSBs) with high safety are promising for the energy fields, but the development has long been limited by machinability and interfacial problems. Hence, self-supporting , flexible Nano LLZO CSEs are prepared with a solvent-free method at 25 ℃ . The 99.8 wt% contents of Nano LLZO particles enable the Nano LLZO CSEs to maintain good thermal stability while exhibiting a wide electrochemical window of 5.0 V and a high Li+ transfer number of 0.8 . The mean modulus reaches 4376 MPa. Benefiting from the interfacial modulation , the Li|Li symmetric batteries based on the Nano LLZO CSEs show benign stability with lithium at the current densities of 0.1 mA cm-2 , 0.2 mA cm-2 , and 0.5 mA cm-2 . In addition, the Li|LiFePO4 (LFP) SSBs achieve favorable cycling performance: the specific capacity reaches 128.1 mAh g-1 at 0.5 C rate, with a capacity retention of about 80% after 600 cycles . In the further tests of the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes with higher energy density, the Nano LLZO CSEs also demonstrate good compatibility: the specific capacities of NCM811-based SSBs reach 177.9 mAh g-1 at 0.5 C rate, while the capacity retention is over 96% after 150 cycles . Furthermore, the Li|LFP soft-pack SSBs verify the safety characteristics and the potential for application, which have a desirable prospect.

     

  • loading
  • [1]
    C. Wang, K. Fu, S. P. Kammampata, D. W. McOwen, A. J. Samson, L. Zhang, G. T. Hitz, A. M. Nolan, E. D. Wachsman, Y. Mo, V. Thangadurai, L. Hu. Chem. Rev. 120(2020)4257-4300.
    [2]
    M. Cai, J. Jin, T. Xiu, Z. Song, M. E. Badding, Z. Wen. Energy Stor. Mater. 47(2022)61-69.
    [3]
    R. Lv, W. Kou, S. Guo, W. Wu, Y. Zhang, Y. Wang, J. Wang. Angew. Chem. Int. Ed. 61(2021).
    [4]
    W. Zhao, J. Yi, P. He, H. Zhou. Electrochemical Energy Reviews. 2(2019)574-605.
    [5]
    J. Janek, W. G. Zeier. Nat. Energy. 8(2023)230-240.
    [6]
    T. Wu, W. Dai, M. Ke, Q. Huang, L. Lu. Adv. Sci. 8(2021) e2100774.
    [7]
    Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi, X. Hao, L. Shen, W. Lv, B. Li, Q.-H. Yang, F. Kang, Y.-B. He. Adv. Fun. Mater. 29(2019)1805301.
    [8]
    W. Zhang, J. Nie, F. Li, Z. L. Wang, C. Sun. Nano Energy. 45(2018)413-419.
    [9]
    L. S. Li, Y. F. Deng, G. H. Chen. J. Energy Chem. 50(2020)154-177.
    [10]
    J. Li, R. Li, L. Li, H. Yang, M. Liu, J. Xiang, S. Hussain, X. Shen, M. Jing. ACS Appl. Energy Mater. 5(2022)10786-10793.
    [11]
    W. Kou, Z. Guo, W. Li, S. Liu, J. Zhang, X. Zhang, W. Wu, J. Wang. J. Membr. Sci. 687(2023).
    [12]
    K. K. Fu, Y. Gong, J. Dai, A. Gong, X. Han, Y. Yao, C. Wang, Y. Wang, Y. Chen, C. Yan, Y. Li, E. D. Wachsman, L. Hu. Proc. Natl. Acad. Sci. 113(2016)7094-7099.
    [13]
    M. Wu, D. Liu, D. Qu, Z. Xie, J. Li, J. Lei, H. Tang. ACS Appl. Mater. Interfaces. 12(2020)52652-52659.
    [14]
    S. Guo, W. Kou, W. Wu, R. Lv, Z. Yang, J. Wang. Chem. Eng. J. 427(2022).
    [15]
    M. Yamamoto, Y. Terauchi, A. Sakuda, M. Takahashi. Sci. Rep. 8(2018)1212.
    [16]
    J. Zheng, M. Tang, Y. Y. Hu. Angew. Chem. Int. Ed. 55(2016)12538-12542.
    [17]
    L. Li, Y. Deng, G. Chen. J. Energy Chem. 50(2020)154-177.
    [18]
    J. Zheng, Y.-Y. Hu. ACS Appl. Mater. Interfaces. 10(2018)4113-4120.
    [19]
    C. Bao, C. Zheng, M. Wu, Y. Zhang, J. Jin, H. Chen, Z. Wen. Adv. Energy Mater. 13(2023)202204028.
    [20]
    L. Porcarelli, C. Gerbaldi, F. Bella, J. R. Nair. Science Reports. 6(2016)19892.
    [21]
    C. Wang, R. Yu, H. Duan, Q. Lu, Q. Li, K. R. Adair, D. Bao, Y. Liu, R. Yang, J. Wang, S. Zhao, H. Huang, X. Sun. ACS Energy Lett. 7(2021)410-416.
    [22]
    R.-A. Tong, L. Chen, B. Fan, G. Shao, R. Liu, C.-A. Wang. ACS Appl. Energy Mater. 4(2021)11802-11812.
    [23]
    T. Jiang, P. He, Y. Liang, L.-Z. Fan. Chem. Eng. J. 421(2021)129965.
    [24]
    T. Jiang, P. He, G. Wang, Y. Shen, C. W. Nan, L. Z. Fan. Adv. Energy Mater. 10(2020)1903376.
    [25]
    S. Wang, Q. Sun, Q. Zhang, C. Li, C. Xu, Y. Ma, X. Shi, H. Zhang, D. Song, L. Zhang. Adv. Energy Mater. 13(2023)2204036.
    [26]
    D.-H. Lien, J. R. Durán Retamal, J.-J. Ke, C.-F. Kang, J.-H. He. Nanoscale. 7(2015)19874-19884.
    [27]
    Q. Wu, W. S. Miao, Y. D. Zhang, H. J. Gao, D. Hui. Nanotechnology Reviews. 9(2020)259-273.
    [28]
    J. Wu, X. Wang, Q. Liu, S. Wang, D. Zhou, F. Kang, D. Shanmukaraj, M. Armand, T. Rojo, B. Li, G. Wang. Nature Communications. 12(2021)5746.
    [29]
    Y. Lin, Z. Yu, W. Yu, S.-L. Liao, E. Zhang, X. Guo, Z. Huang, Y. Chen, J. Qin, Y. Cui, Z. Bao. J. Mater. Chem. A. 12(2024)2986-2993.
    [30]
    F. Wang, H. Liu, Y. Guo, Q. Han, P. Lou, L. Li, J. Jiang, S. Cheng, Y. Cao. Energy Environ. Mater. 7(2024) e12497.
    [31]
    M. Liu, W. Xie, B. Li, Y. Wang, G. Li, S. Zhang, Y. Wen, J. Qiu, J. Chen, P. Zhao. ACS Appl. Mater. Interfaces. 14(2022)43116-43126.
    [32]
    L. Yang, Q. Dai, L. Liu, D. Shao, K. Luo, S. Jamil, H. Liu, Z. Luo, B. Chang, X. Wang. Ceramics International. 46(2020)10917-10924.
    [33]
    S. Yubuchi, M. Uematsu, C. Hotehama, A. Sakuda, A. Hayashi, M. Tatsumisago. J. Mater. Chem. A. 7(2019)558-566.
    [34]
    C. Guo, Y. Guo, R. Tao, X. Liao, K. Du, H. Zou, W. Zhang, J. Liang, D. Wang, X.-G. Sun, S.-Y. Lu. Nano Energy. 96(2022)107121.
    [35]
    M. S. Kim, Z. Zhang, P. E. Rudnicki, Z. Yu, J. Wang, H. Wang, S. T. Oyakhire, Y. Chen, S. C. Kim, W. Zhang, D. T. Boyle, X. Kong, R. Xu, Z. Huang, W. Huang, S. F. Bent, L. W. Wang, J. Qin, Z. Bao, Y. Cui. Nat. Mater. 21(2022)445-454.
    [36]
    J. Tan, J. Matz, P. Dong, J. Shen, M. Ye. Adv. Energy Mater. 11(2021)2100046.
    [37]
    W. Deng, W. Dai, X. Zhou, Q. Han, W. Fang, N. Dong, B. He, Z. Liu. ACS Energy Lett. 6(2020)115-123.
    [38]
    Q. Han, W. Sha, J. He, Y. Guo, F. Wang, W. Zhang, S. Tang, P. Lou, M. Guan, S. Cheng, Y. Cao. Chem. Eng. J. 446(2022)137051.
    [39]
    S. S. Zhang. Energy Stor. Mater. 24(2020)247-254.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (95) PDF downloads(3) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return