Turn off MathJax
Article Contents
Wenrui Wan, Fanhua Meng, Si Chen, Jianhua Wang, Chunyan Liu, Yan Wei, Chenpu He, Li Fan, Qiaolan Zhang, Weichun Ye, Huanwang Jing. Triazine-COF@Silicon nanowire mimicking plant leaf to enhance photoelectrocatalytic CO2 reduction to C2+ chemicals. Green Energy&Environment. doi: 10.1016/j.gee.2024.04.007
Citation: Wenrui Wan, Fanhua Meng, Si Chen, Jianhua Wang, Chunyan Liu, Yan Wei, Chenpu He, Li Fan, Qiaolan Zhang, Weichun Ye, Huanwang Jing. Triazine-COF@Silicon nanowire mimicking plant leaf to enhance photoelectrocatalytic CO2 reduction to C2+ chemicals. Green Energy&Environment. doi: 10.1016/j.gee.2024.04.007

Triazine-COF@Silicon nanowire mimicking plant leaf to enhance photoelectrocatalytic CO2 reduction to C2+ chemicals

doi: 10.1016/j.gee.2024.04.007
  • Converting CO2 and water into valuable chemicals like plant do is considered a promising approach to address both environmental and energy issues. Taking inspiration from the structures of natural leaves, we designed and synthesized a novel copper-coordinated covalent triazine framework (CuCTF) supported by silicon nanowire arrays on wafer chip. This marks the first-ever application of such a hybrid material in the photoelectrocatalytic reduction of CO2 under mild conditions. The Si@CuCTF6 heterojunction has exhibited exceptional selectivity of 95.6% towards multicarbon products (C2+) and apparent quantum efficiency (AQE) of 0.89% for carbon-based products. The active sites of the catalysts are derived from the nitrogen atoms of unique triazine ring structure in the ordered porous framework and the abundant Cu-N coordination sites with bipyridine units. Furthermore, through DFT calculations and operando FTIR spectra analysis, we proposed a comprehensive mechanism for the photoelectrocatalytic CO2 reduction, confirming the existence of key intermediate species such as *CO2-, *=C=O, *CHO and *CO-CHO etc. This work not only provides a new way to mimic photosynthesis of plant leaves but also gives a new opportunity to enter this research field in the future.

     

  • loading
  • [1]
    P. Gao, L. Zhong, B. Han, M. He, Y. Sun, Angew. Chem. Int. Ed. 61(2022) e202210095.
    [2]
    K. Wei, H. Guan, Q. Luo, J. He, S. Sun, Nanoscale 14(2022)11869-11891.
    [3]
    J. Liu, H. Shi, Q. Shen, C. Guo, G. Zhao, Green Chem. 19(2017)5900-5910.
    [4]
    S. Xu, Q. Shen, J. Zheng, Z. Wang, X. Pan, N. Yang, G. Zhao, Adv. Sci. 9(2022)2203941.
    [5]
    W. Wan, Q. Zhang, Y. Wei, Y. Cao, J. Hou, C. Liu, L. Hong, H. Gao, J. Chen, H. Jing, Chem. Eng. J. 454(2023)140122.
    [6]
    M. Rahaman, V. Andrei, D. Wright, E. Lam, C. Pornrungroj, S. Bhattacharjee, C. M. Pichler, H. F. Greer, J. J. Baumberg, E. Reisner, Nat. Energy 8(2023)629-638.
    [7]
    T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 277(1979)637-638.
    [8]
    X. Deng, R. Li, S. Wu, L. Wang, J. Hu, J. Ma, W. Jiang, N. Zhang, X. Zheng, C. Gao, L. Wang, Q. Zhang, J. Zhu, Y. Xiong, J. Am. Chem. Soc. 141(2019)10924-10929.
    [9]
    W. Liu, Y. Yang, F. Zhan, D. Li, Y. Li, X. Tang, W. Li, J. Li, Int. J. Hydrogen Energy 43(2018)8770-8778.
    [10]
    M. Li, P. Li, K. Chang, H. Liu, X. Hai, H. Zhang, J. Ye, Chem. Commun. 52(2016)8235-8238.
    [11]
    Y. Zhang, B. Han, Y. Xu, D. Zhao, Y. Jia, R. Nie, Z. Zhu, F. Chen, J. Wang, H. Jing, ChemSusChem 10(2017)1742-1748.
    [12]
    C. Liu, Y. Xiao, W. Wan, Y. Wei, Y. Cao, L. Hong, Y. Wang, J. Chen, Q. Zhang, H. Jing, Appl. Catal. B Environ. 325(2023)122394.
    [13]
    J. Wang, S. Lin, N. Tian, T. Ma, Y. Zhang, H. Huang, Adv. Funct. Mater. 31(2021)2008008.
    [14]
    R. Nie, W. Ma, Y. Dong, Y. Xu, J. Wang, J. Wang, H. Jing, ChemCatChem 10(2018)3342-3350.
    [15]
    J. Cheng, Y. Hou, K. Lian, H. Xiao, S. Lin, X. Wang, ACS Catal. 12(2022)1797-1808.
    [16]
    X. X. Jiang, X. De Hu, M. Tarek, P. Saravanan, R. Alqadhi, S. Y. Chin, M. M. Rahman Khan, J. CO2 Util. 40(2020)101222.
    [17]
    Y. Xu, F. Wang, S. Lei, Y. Wei, D. Zhao, Y. Gao, X. Ma, S. Li, S. Chang, M. Wang, H. Jing, Chem. Eng. J. 452(2023)139392.
    [18]
    M. Halmann, Nature 275(1978)115-116.
    [19]
    S. Kaneco, Y. Ueno, H. Katsumata, T. Suzuki, K. Ohta, Chem. Eng. J. 148(2009)57-62.
    [20]
    J. Oh, T. G. Deutsch, H.-C. Yuan, H. M. Branz, Energy Environ. Sci. 4(2011)1690-1694.
    [21]
    R. N. Dominey, N. S. Lewis, J. A. Bruce, D. C. Bookbinder, M. S. Wrighton, J. Am. Chem. Soc. 104(1982)467-482.
    [22]
    D. Liu, L. L. Li, Y. Gao, Ch. M. Wang, J. Jiang, Y. J. Xiong, Angew. Chem. Int. Ed. 54(2015)2980-2985.
    [23]
    M. Shao, L. Cheng, X. Zhang, D. D. D. Ma, S.-t. Lee, J. Am. Chem. Soc. 131(2009)17738-17739.
    [24]
    I. Roh, S. Yu, C. K. Lin, S. Louisia, S. Cestellos-Blanco, P. Yang, J. Am. Chem. Soc. 144(2022)8002-8006.
    [25]
    M. Kan, Z. W. Yan, X. Wang, J. L. Hitt, L. Xiao, J. M. McNeill, Y. Wang, Y. Zhao, T. E. Mallouk, Angew. Chem. Int. Ed. 59(2020)11462-11469.
    [26]
    Q. Zhang, X. Zhou, Z. Kuang, Y. Xue, C. Li, M. Zhu, C. Y. Mou, H. Chen, ACS Sustainable Chem. Eng. 10(2022)2380-2387.
    [27]
    W. J. Dong, I. A. Navid, Y. Xiao, J. W. Lim, J.-L. Lee, Z. Mi, J. Am. Chem. Soc. 143(2021)10099-10107.
    [28]
    A. Kumar, V. Hasija, A. Sudhaik, P. Raizada, Q. Van Le, P. Singh, T.-H. Pham, T. Kim, S. Ghotekar, V.-H. Nguyen, Chem. Eng. J. 430(2022)133031.
    [29]
    K. J. Niklas, New Phytol. 143(1999)19-31.
    [30]
    H. Zhou, J. Guo, P. Li, T. Fan, D. Zhang, J. Ye, Sci. Rep. 3(2013)1667.
    [31]
    P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 47(2008)3450-3453.
    [32]
    M. Liu, L. Guo, S. Jin, B. Tan, J. Mater. Chem. A 7(2019)5153-5172.
    [33]
    K. Wang, L. M. Yang, X. Wang, L. Guo, G. Cheng, C. Zhang, S. Jin, B. Tan, A. Cooper, Angew. Chem. Int. Ed. 56(2017)14149-14153.
    [34]
    C. Guo, Y. Guo, Y. Shi, X. Lan, Y. Wang, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 61(2022) e202205909.
    [35]
    M. Lan, H. Zhao, H. Yuan, C. Jiang, S. Zuo, Y. Jiang, Dyes Pigm. 74(2007)357-362.
    [36]
    Y. He, Y. Zhao, X. Wang, Z. Liu, Y. Yu, L. Li, Angew. Chem. Int. Ed. 62(2023) e202307160.
    [37]
    H. Chen, S. Gao, G. Huang, Q. Chen, Y. Gao, J. Bi, Appl. Catal. B Environ. 343(2024)123545.
    [38]
    H. Li, Y. Chen, Q. Niu, X. Wang, Z. Liu, J. Bi, Y. Yu, L. Li, Chin. J. Catal. 49(2023)152-159.
    [39]
    S. Gao, Q. Zhang, X. Su, X. Wu, X.-G. Zhang, Y. Guo, Z. Li, J. Wei, H. Wang, S. Zhang, J. Wang, J. Am. Chem. Soc. 145(2023)9520-9529.
    [40]
    W. Ma, S. Xie, T. Liu, Q. Fan, J. Ye, F. Sun, Z. Jiang, Q. Zhang, J. Cheng, Y. Wang, Nat. Catal. 3(2020)478-487.
    [41]
    E. Pérez-Gallent, M. C. Figueiredo, F. Calle-Vallejo, M. T. M. Koper, Angew. Chem. Int. Ed. 56(2017)3621-3624.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (78) PDF downloads(3) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return