Volume 9 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
Yifan Wang, Jinghui Wu, Yidi Gao, Keqing Li, Chi Wang, Xiaochun Cui, Mingxin Huo, Xianze Wang. Accelerating the practical application of MOFs for hydrogen storage—from performance-driven to application-oriented. Green Energy&Environment, 2024, 9(8): 1193-1198. doi: 10.1016/j.gee.2024.03.007
Citation: Yifan Wang, Jinghui Wu, Yidi Gao, Keqing Li, Chi Wang, Xiaochun Cui, Mingxin Huo, Xianze Wang. Accelerating the practical application of MOFs for hydrogen storage—from performance-driven to application-oriented. Green Energy&Environment, 2024, 9(8): 1193-1198. doi: 10.1016/j.gee.2024.03.007

Accelerating the practical application of MOFs for hydrogen storage—from performance-driven to application-oriented

doi: 10.1016/j.gee.2024.03.007
  • Metal–organic frameworks (MOFs) are highly promising porous materials known for their exceptional porosity, extensive surface area, and customizable pore structures, making them an ideal solution for hydrogen storage. However, most MOFs research remains confined to the laboratory, lacking practical applications. To address this, the author proposes a shift towards practical applications, the creation of a comprehensive MOFs database, alignment of synthesis with practical considerations, and diversification of MOFs applications. These steps are crucial for harnessing the full potential of MOFs in real-world energy challenges.

     

  • loading
  • [1]
    N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'keeffe, O.M. Yaghi, Sci 300 (2003) 1127-1129.
    [2]
    O.K. Farha, A. Özgür Yazaydin, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, Nat. Chem. 2 (2010) 944-948.
    [3]
    A. Ahmed, D.J.J.P. Siegel, Patterns 2 (2021).
    [4]
    J. Goldsmith, A.G. Wong-Foy, M.J. Cafarella, D.J. Siegel, Chem. Mater. 25 (2013) 3373-3382.
    [5]
    Y.G. Chung, J. Camp, M. Haranczyk, B.J. Sikora, W. Bury, V. Krungleviciute, T. Yildirim, O.K. Farha, D.S. Sholl, R.Q. Snurr, Chem. Mater. 26 (2014) 6185-6192.
    [6]
    Y. Zhong, Z. Peng, Y. Peng, B. Li, Y. Pan, Q. Ouyang, H. Sakiyama, M. Muddassir, J. Liu, J MATER CHEM B 11 (2023) 6335-6345.
    [7]
    X. Chen, M. Li, M. Lin, C. Lu, A. Kumar, Y. Pan, J. Liu, Y. Peng, J MATER CHEM B 11 (2023) 5693-5714.
    [8]
    R. Freund, O. Zaremba, G. Arnauts, R. Ameloot, G. Skorupskii, M. Dincă, A. Bavykina, J. Gascon, A. Ejsmont, J. Goscianska, Angew. Chem. Int. Ed. 60 (2021) 23975-24001.
    [9]
    E.A. Dolgopolova, A.M. Rice, C.R. Martin, N.B. Shustova, Chem. Soc. Rev. 47 (2018) 4710-4728.
    [10]
    A. Ahmed, S. Seth, J. Purewal, A.G. Wong-Foy, M. Veenstra, A.J. Matzger, D.J. Siegel, Nat. Chem. 10 (2019) 1568.
    [11]
    Y.G. Chung, E. Haldoupis, B.J. Bucior, M. Haranczyk, S. Lee, H. Zhang, K.D. Vogiatzis, M. Milisavljevic, S. Ling, J.S. Camp, B. Slater, J.I. Siepmann, D.S. Sholl, R.Q. Snurr, J CHEM ENG DATA 64 (2019) 5985-5998.
    [12]
    C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser, J.T. Hupp, R.Q. Snurr, Nat. Chem. 4 (2012) 83-89.
    [13]
    P.Z. Moghadam, A. Li, S.B. Wiggin, A. Tao, A.G.P. Maloney, P.A. Wood, S.C. Ward, D. Fairen-Jimenez, Chem. Mater. 29 (2017) 2618-2625.
    [14]
    J. Park, Y. Lim, S. Lee, J. Kim, Chem. Mater. 35 (2022) 9-16.
    [15]
    B. Panella, M. Hirscher, S. Roth, Carbon 43 (2005) 2209-2214.
    [16]
    H.C. Gulbalkan, Z.P. Haslak, C. Altintas, A. Uzun, S. Keskin, Chem. Eng. J. 428 (2022) 131239.
    [17]
    D.J. Tranchemontagne, J.R. Hunt, O.M. Yaghi, Tetrahedron 64 (2008) 8553-8557.
    [18]
    J.L.C. Rowsell, O.M. Yaghi, JACS 128 (2006) 1304-1315.
    [19]
    C. Grady, S. Mcwhorter, M. Sulic, S.J. Sprik, M.J. Thornton, K.P. Brooks, D.A. Tamburello, INT J HYDROGEN ENERG 47 (2022) 29847-29857.
    [20]
    D. Saha, Z. Wei, S. Deng, Int. J. Hydrogen Energy 33 (2008) 7479-7488.
    [21]
    R.P. Paitandi, Y. Wan, W. Aftab, R. Zhong, R. Zou, Adv. Funct. Mater. 33 (2023) 2203224.
    [22]
    S.C. Wijayasekera, K. Hewage, P. Hettiaratchi, F. Razi, R. Sadiq, Energy 278 (2023) 127850.
    [23]
    X. He, F. Wang, T. Wallington, W. Shen, M. Melaina, H. Kim, R. De Kleine, T. Lin, S. Zhang, G. Keoleian, RSER 137 (2021) 110477.
    [24]
    A. Benitez, C. Wulf, A. De Palmenaer, M. Lengersdorf, T. Roding, T. Grube, M. Robinius, D. Stolten, W. Kuckshinrichs, J CLEAN PROD 278 (2021) 123277.
    [25]
    M.I. Severino, E. Gkaniatsou, F. Nouar, M.L. Pinto, C. Serre, Faraday Discussions 231 (2021) 326-341.
    [26]
    J. Park, Y. Lim, S. Lee, J. Kim, Chem. Mater. 35 (2023) 9-16.
    [27]
    M. Jeon, O. Kwon, J. Kim, J. Phys. Chem. C 127 (2023) 18089-18098.
    [28]
    D. Desantis, J.A. Mason, B.D. James, C. Houchins, J.R. Long, M. Veenstra, Energy & Fuels 31 (2017) 2024-2032.
    [29]
    S. Bagi, S. Yuan, S. Rojas-Buzo, Y. Shao-Horn, Y. Roman-Leshkov, Green Chemistry 23 (2021) 9982-9991.
    [30]
    S.R. Wenger, E.R. Kearns, K.L. Miller, D.M. D’alessandro, ACS Appl. Energy Mater. 6 (2023) 9074-9083.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (76) PDF downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return