Turn off MathJax
Article Contents
Yunxin Shi, Ziyang Guo, Changhong Wang, Mingze Gao, Xiaoting Lin, Hui Duan, Yonggang Wang, Xueliang Sun. Design of Multifunctional Interfaces on Ceramic Solid Electrolytes for High-Performance Lithium-Air Batteries. Green Energy&Environment. doi: 10.1016/j.gee.2024.02.010
Citation: Yunxin Shi, Ziyang Guo, Changhong Wang, Mingze Gao, Xiaoting Lin, Hui Duan, Yonggang Wang, Xueliang Sun. Design of Multifunctional Interfaces on Ceramic Solid Electrolytes for High-Performance Lithium-Air Batteries. Green Energy&Environment. doi: 10.1016/j.gee.2024.02.010

Design of Multifunctional Interfaces on Ceramic Solid Electrolytes for High-Performance Lithium-Air Batteries

doi: 10.1016/j.gee.2024.02.010
  • High-energy-density lithium (Li)-air cells have been considered a promising energy-storage system, but the liquid electrolyte-related safety and side-reaction problems seriously hinder their development. To address these above issues, solid-state Li-air batteries have been widely developed. However, many commonly-used solid electrolytes generally face huge interface impedance in Li-air cells and also show poor stability towards ambient air/Li electrodes. Herein, we fabricate a differentiating surface-regulated ceramic-based composite electrolyte (DSCCE) by constructing disparately LiI-containing polymethyl methacrylate (PMMA) coating and Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) layer on both sides of Li1.5Al0.5Ge1.5(PO4)3 (LAGP). The cathode-friendly LiI/PMMA layer displays excellent stability towards O2- and also greatly reduces the decomposition voltage of discharge products in Li-air system. Additionally, the anode-friendly PVDF-HFP coating shows low-resistance properties towards anodes.Moreover, Li dendrite/passivation derived from liquid electrolyte-induced side reactions and air/I-attacking can be obviously suppressed by the uniform and compact composite framework. As a result, the DSCCE-based Li-air batteries possess high capacity/low voltage polarization (11836 mA h g-1/1.45 V under 500 mA g-1), good rate performance (capacity ratio under 1000 mA g-1/250 mA g-1 is 68.2 %) and long-term stable cell operation (300 cycles at 750 mA g-1 with 750 mAh g-1) in ambient air.

     

  • loading
  • [1]
    H. Wang, D. D. Yu, C. W. Kuang, L. W. Cheng, W. Li, X. L. Feng, Z. Zhang, X. B. Zhang, Y. Zhang, Chem 5(2019) 313-338.
    [2]
    J. W. Liang, X. N. Li, K. R. Adair, X. L. Sun, Acc. Chem. Res. 54(2021) 1023-1033.
    [3]
    H. Pan, M. H. Zhang, Z. Cheng, H. Y. Jiang, J. G. Yang, P. F. Wang, P. He, H. S. Zhou, Sci. Adv. 8(2022) eabn4372.
    [4]
    Y. Liu, W. Li, Y. Y. Xia, Electrochem. Energy R. 4(2021) 447-472.
    [5]
    Y. Chen, S. Z. Liu, Z. X. Bi, Z. Li, F. Y. Zhou, R. F. Shi, T. C. Mu, Green Energy Environ. (2024), https://doi.org/10.1016/j.gee.2023.05.002.
    [6]
    H. Yang, B. Zhang, M. X. Jing, X. Q. Shen, L. Wang, H. Xu, X. H. Yan, X. M. He, Adv. Energy Mater. 12(2022) 2201762.
    [7]
    K. C. Pan, M. h. Li, W. C. Wang, S. C. Xing, Y. Y. Dou, S. S. Gao, Z. Zhang, Z. Zhou, Green Energy Environ. 8(2023) 939e944.
    [8]
    T. T. Dong, P. Z. Mu, S. Zhang, H. R. Zhang, W. Liu, G. L. Cui, Electrochem. Energy R. 4(2021) 545-565.
    [9]
    S. M. Xu, X. Liang, X. Liu, W. L. Bai, Y. S. Liu, Z. P. Cai, Q. Zhang, C. Zhao, K. X. Wang, J. S. Chen, Energy Storage Mater. 25(2020) 52-61.
    [10]
    H. Ouyang, S. Min, J. Yi, X. Y. Liu, F. H. Ning, J. Q. Qin, Y. Jiang, B. Zhao, J. J. Zhang, Green Energy Environ. 8(2023) 1195e1204.
    [11]
    Z. H. Huang, J. Li, L. X. Li, H. M. Xu, C. Han, M. Q. Liu, J. Xiang, X. Q. Shen, M. X. Jing, Ceram. Int. 48(2022) 25949.
    [12]
    Z. J. Liu, G. Q. Liu, L. L. Cheng, J. Gu, H. R. Yuan, Y. Chen, Y. F. Wu. Green Energy Environ. (2024), https://doi.org/10.1016/j.gee.2023.09.001.
    [13]
    H. Ouyang, S. Min, J. Yi, X. Liu, F. H. Ning, Y. Xu, Y. Jiang, B. Zhao, J. J. Zhang, ACS Appl. Mater. Interfaces. 14(2022) 53648-53657.
    [14]
    R. Li, J. Li, L. X. Li, H. Yang, G. Zhang, J. Xiang, X. Q. Shen, M. X. Jing, Colloids Surf. A. 657(2023) 130600.
    [15]
    X. W. Chi, M. L. Li, J. C. Di, P. Bai, L. N. Song, X. X. Wang, F. Li, S. Liang, J. J. Xu, J. H. Yu, Nature 592(2021) 551-557.
    [16]
    P. Wang, D. Y. Zhao, X. B. Hui, Z. Qian, P. Zhang, Y. Y. Ren, Y. Lin, Z. W. Zhang, L. W. Yin, Adv. Energy Mater. 11(2021) 2003069.
    [17]
    Y. Zhou, K. Yin, Q. F. Gu, L. Tao, Y. J. Li, H. Tan, J. H. Zhou, W. S. Zhang, H. B. Li, S. J. Guo, Angew. Chem. Int. Ed. 60(2021) 26592-26598.
    [18]
    Y. Y. Dou, Z. J. Xie, Y. J. Wei, Z. Q. Peng, Z. Zhou, Natl. Sci. Rev. 9(2022) nwac040.
    [19]
    J. Q. Zhang, Y. F. Zhao, B. Sun, Y. Xie, A. Tkacheva, F. L. Qiu, P. He, H. S. Zhou, K. Yan, X. Guo, S. J. Wang, A. M. McDonagh, Z. Q. Peng, J. Lu, G. X. Wang, Sci. Adv. 8(2022) eabm1899.
    [20]
    S. Y. Ma, H. C. Yao, Z. J. Li, Q. C. Liu, J. Energy Chem. 70(2022) 614-622.
    [21]
    S. C. Wu, J. Yi, K. Zhu, S. Y. Bai, Y. Liu, Y. Qiao, M. Ishida, H. S. Zhou, Adv. Energy Mater. 7(2017) 1601759.
    [22]
    J. Lu, Z. W. Chen, F. Pan, Y. Cui, K. Amine, Electrochem. Energy R. 1(2018) 35-58.
    [23]
    Y. X. Wang, Y. J. Liu, M. Nguyen, J. Cho, N. Katyal, B. S. Vishnugopi, H. C. Hao, R. Y. Fang, N. Wu, P. C, Liu, P. P. Mukherjee, J. Nanda, G. Henkelman, J. Watt, D. Mitlin, Adv. Mater. 35(2023) 2206762.
    [24]
    W. Liang, F. Lian, N. Meng, J. H. Lu, L. J. Ma, C.-Z. Zhao, Q. Zhang, Energy Storage Mater. 28(2020) 350-356.
    [25]
    C. L. Li, G. Huang, Y. Yu, Q. Xiong, J. M. Yan, X. B. Zhang, J. Am. Chem. Soc. 144(2022) 5827-5833.
    [26]
    X. H. Zou, Q. Lu, K. M. Liao, Z. P. Shao, Energy Storage Mater. 45(2022) 869-902.
    [27]
    S. Gu, C. Z. Sun, D. Xu, Y. Lu, J. Jin, Z. Y. Wen, Electrochem. Energy R. 1(2018) 599-624.
    [28]
    X. W. Pan, J. W. Sun, C. Jin, Z. J. Wang, R. J. Xiao, L. Peng, L. W. Shen, C. Li, R. Z. Yang, Solid State Ionics 351(2020) 115340.
    [29]
    C. W. Wang, K. Fu, S. P. Kammampata, D. W. McOwen, A. J. Samson, L. Zhang, G. T. Hitz, A. M. Nolan, E. D. Wachsman, Y. F. Mo, V. Thangadurai, L. B. Hu, Chem. Rev. 120(2020) 4257-4300.
    [30]
    J. N. Lai, Y. Xing, N. Chen, L. Li, F. Wu, R. J. Chen, Angew. Chem. Int. Ed. 59(2020) 2974-2997.
    [31]
    Z. W. Zhao, L. Pang, Y. Y. Mu, Y. Z. Chen, Z. Q. Peng, Adv. Energy Mater. 13(2023) 2301127.
    [32]
    Y. B. Kim, I. T. Kim, M. J. Song, M. W. Shin, J. Membrane Sci. 563(2018) 835-842.
    [33]
    E. Umeshbabu, B. Z. Zheng, Y. Yang, Electrochem. Energy R. 2(2019) 199-230.
    [34]
    L. L. Liu, H. P. Guo, L. J. Fu, S. L. Chou, S. Thiele, Y. P. Wu, J. Z. Wang, Small 17(2019) 1903854.
    [35]
    M. L. Xie, Z. M. Huang, X. Lin, Y. K. Li, Z. M. Huang, L. X. Yuan, Y. Shen, Y. H. Huang, Energy Storage Mater. 20(2019) 307-314.
    [36]
    A. Kondori, M. Esmaeilirad, A. M. Harzandi, R. Amine, M. T. Saray, L. Yu, T. C. Liu, J. G. Wen, N. N. Shan, H. H. Wang, A. T. Ngo, P. C. Redfern, C. S. Johnson, K. Amine, R. Shahbazian-Yassar, L. A. Curtiss, M. Asadi, Science, 379(2023) 499-505.
    [37]
    M. Y. Jia, N. Zhao, H. Y. Huo, X. X. Guo, Electrochem. Energy R. 3(2020) 656-689.
    [38]
    H. Su, Y. Liu, Y. Zhong, J. R. Li, X. L. Wang, X. H. Xia, C. D. Gu, J. P. Tu, Nano Energy 96(2022) 107104.
    [39]
    J. K. Hu, H. Yuan, S. J. Yang, Y. Lu, S. Sun, J. Liu, Y. L. Liao, S. Li, C. Z. Zhao, J. Q. Huang, J. Energy Chem. 71(2022) 612-618.
    [40]
    C. H. Wang, J. W. Liang, J. Luo, J. Liu, X. N. Li, F. P. Zhao, R. Y. Li, H. Huang, S. Q. Zhao, L. Zhang, J. T. Wang, X. L. Sun, Sci. Adv. 7(2021) eabh1896.
    [41]
    H. Kwak, S. Wang, J. Park, Y. S. Liu, K. T. Kim, Y. Choi, Y. F. Mo, Y. S. Jung, ACS Energy Lett. 7(2022) 1776-1805.
    [42]
    Y. M. Du, Y. J. Liu, S. X. Yang, C. Li, Z. Cheng, F. L. Qiu, P. He, H.S. Zhou, J. Mater. Chem. A 9(2021) 9581-9585.
    [43]
    X. W. Yu, L. G. Xue, J. B. Goodenough, A. Manthiram, Adv. Funct. Mater. 31(2021) 2002144.
    [44]
    R. Zhao, L. Gao, M. R. Song, Y. Ye, Z. B. Liang, J. C. Bian, J. L. Zhu, S. Li, R. Q. Zou, Y. S. Zhao, ACS Energy Lett. 6(2021) 3141-3150.
    [45]
    A. Paolella, X. Liu, A. Daali, W. Q. Xu, I. Hwang, S. Savoie, G. Girard, A. G. Nita, A. Perea, H. Demers, W. Zhu, A. Guerfi, A. Vijh, G. Bertoni, G. C. Gazzadi, G. Berti, C. J. Sun, Y. Ren, K. Zaghib, M. Armand, C. Kim, G. L. Xu, K. Amine, Adv. Funct. Mater. 31(2021) 2102765.
    [46]
    A. Paolella, W. Zhu, G. L. Xu, A. L. Monaca, S. Savoie, G. Girard, A. Vijh, H. Demers, A. Perea, N. Delaporte, A. Guerfi, X. Liu, Y. Ren, C. J. Sun, J. Lu, K. Amine, K. Zaghib, Adv. Energy Mater. 10(2020) 2001497.
    [47]
    H. Duan, M. Fan, W. P. Chen, J. Y. Li, P. F. Wang, W. P. Wang, J. L. Shi, Y. X. Yin, L. J. Wan, Y. G. Guo, Adv. Mater. 31(2019) 1807789.
    [48]
    Z. Cheng, H. Pan, F. Li, C. Duan, H. Liu, H. Y. Zhong, C. C. Sheng, G. J. Hou, P. He, H. S. Zhou, Nat Commun. 13(2022) 125.
    [49]
    J. Y. Liang, X. X. Zeng, X. D. Zhang, T. T. Zuo, M. Yan, Y. X. Yin, J. L. Shi, X. W. Wu, Y. G. Guo, L. J. Wan, J. Am. Chem. Soc. 141(2019) 9165-9169.
    [50]
    C. T. Zhao, Y. M. Zhu, Q. Sun, C. H. Wang, J. Luo, X. T. Lin, X. F. Yang, Y. Zhao, R. Y. Li, S. Q. Zhao, H. Huang, L. Zhang, S .G. Lu, M. Gu, X. L. Sun, Angew. Chem. Int. Ed. 60(2021) 5821-5826.
    [51]
    X. P. Zhang, Y. Y. Sun, Z. Sun, C. S. Yang, T. Zhang, Nat. Commun. 10(2019) 3543.
    [52]
    Z. Y. Guo, Q. W. Zhang, C. Wang, Y. J. Zhang, S. M. Dong, G. L. Cui, Adv. Funct. Mater. 32(2022) 2108993.
    [53]
    C. W. Ma, F. Xu, T. L. Song, ACS Appl. Mater. Interfaces 14(2022) 20197-20207.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (58) PDF downloads(3) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return