Turn off MathJax
Article Contents
Xuefeng Bai, Yi Li, Yabo Xie, Qiancheng Chen, Xin Zhang, Jian-Rong Li. High-throughput screening of CO2 cycloaddition MOF catalyst with an explainable machine learning model. Green Energy&Environment. doi: 10.1016/j.gee.2024.01.010
Citation: Xuefeng Bai, Yi Li, Yabo Xie, Qiancheng Chen, Xin Zhang, Jian-Rong Li. High-throughput screening of CO2 cycloaddition MOF catalyst with an explainable machine learning model. Green Energy&Environment. doi: 10.1016/j.gee.2024.01.010

High-throughput screening of CO2 cycloaddition MOF catalyst with an explainable machine learning model

doi: 10.1016/j.gee.2024.01.010
  • The high porosity and tunable chemical functionality of metal-organic frameworks (MOFs) make it a promising catalyst design platform. High-throughput screening of catalytic performance is feasible since the large MOF structure database is available. In this study, we report a machine learning model for high-throughput screening of MOF catalysts for the CO2 cycloaddition reaction. The descriptors for model training were judiciously chosen according to the reaction mechanism, which leads to high accuracy up to 97% for the 75% quantile of the training set as the classification criterion. The feature contribution was further evaluated with SHAP and PDP analysis to provide a certain physical understanding. 12,415 hypothetical MOF structures and 100 reported MOFs were evaluated under 100 °C and 1 bar within one day using the model, and 239 potentially efficient catalysts were discovered. Among them, MOF-76(Y) achieved the top performance experimentally among reported MOFs, in good agreement with the prediction.

     

  • loading
  • [1]
    L. Jiao, Y. Wang, H.-L. Jiang, Q. Xu, Adv. Mater. 30 (2018) 1703663-1703693.
    [2]
    G.P. Liu, B. Wang, L. Wang, W.X. Wei, Y. Quan, C.T. Wang, W.S. Zhu, H.M. Li, J.X. Xia, Green Energy Environ. 7 (2022) 423-431.
    [3]
    G. Cai, P. Yan, L. Zhang, H.-C. Zhou, H.-L. Jiang, Chem. Rev. 121 (2021) 12278-12326.
    [4]
    R. R. Shaikh, S. Pornpraprom, V. D’Elia, ACS Catal. 8 (2017) 419-450.
    [5]
    X. Wei, W. Xu, M. Vijayakumar, L. Cosimbescu, T. Liu, V. Sprenkle, W. Wang, Adv. Mater. 26 (2014) 7649-7653.
    [6]
    P. Z. Li, X. J. Wang, J. Liu, J. S. Lim, R. Zou, Y. Zhao, J. Am. Chem. Soc. 138 (2016) 2142-2145.
    [7]
    Z. Lin, Z.-M. Zhang, Y.-S. Chen, W. Lin, Angew. Chem. Int. Ed. 55 (2016) 13739-13743.
    [8]
    J. Zhu, P. M. Usov, W. Xu, P. J. Celis-Salazar, S. Lin, M. C. Kessinger, C. Landaverde-Alvarado, M. Cai, A. M. May, C. Slebodnick, D. Zhu, S. D. Senanayake, A. J. Morris, J. Am. Chem. Soc. 140 (2018) 993-1003.
    [9]
    Y. Shen, T. Pan, L. Wang, Z. Ren, W. Zhang, F. Huo, Adv. Mater. 33 (2021) 2007442.
    [10]
    D. Yang, C. A. Gaggioli, D. Ray, M. Babucci, L. Gagliardi, B. C. Gates, J. Am. Chem. Soc. 142 (2020) 8044-8056.
    [11]
    H. Lyu, Z. Ji, S. Wuttke, O. M. Yaghi, Chem. 6 (2020) 2219-2241.
    [12]
    X.-Q. Wu, P.-D. Zhang, X. Zhang, J.-H. Liu, T. He, J. Yu, J.-R. Li, Green Energy Environ. 8 (2023) 1703-1710.
    [13]
    T. He, X.-J. Kong, J. Zhou, C. Zhao, K. Wang, X.-Q. Wu, X.-L. Lv, G.-R. Si, J.-R. Li, Z.-R. Nie, J. Am. Chem. Soc. 143 (2021) 9901-9911.
    [14]
    C. Wang, D. Liu, W. Lin, J. Am. Chem. Soc. 135 (2013) 13222-13234.
    [15]
    A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, O. K. Farha, Nat. Rev. Mater. 1 (2016) 15018.
    [16]
    S. Li, Y. Zhang, Y. Hu, B. Wang, S. Sun, X. Yang, H. He, Journal of Materiomics 7 (2021) 1029-1038.
    [17]
    N. Tsuji, P. Sidorov, C. Zhu, Y. Nagata, T. Gimadiev, A. Varnek, B. List, Angew. Chem. Int. Ed. 62 (2023) e202218659.
    [18]
    A. F. Zahrt, J. J. Henle, B. T. Rose, Y. Wang, W. T. Darrow, S. E. Denmark, Science 363 (2019) eaau5631.
    [19]
    L.-C. Xu, S. Q. Zhang, X. Li, M.-J. Tang, P.-P. Xie, X. Hong, Angew. Chem. Int. Ed. 60 (2021) 22804-22811.
    [20]
    J. Li, L. Pan, M. Suvarna, X. Wang, Chem. Eng. J. 426 (2021) 131285.
    [21]
    J. Li, S. Dong, B. An, Z. Zhang, Y. Li, L. Wang, J. Zhang, Fuel 335 (2023) 126942.
    [22]
    J. Hu, J. Cui, B. Gao, L. Yang, Q. Ding, Y. Li, Y. Mo, H. Chen, X. Cui, H. Xing, Matter 5 (2022) 3901-3911.
    [23]
    P. G. Boyd, A. Chidambaram, E. Garcia-Diez, C. P. Ireland, T. D. Daff, R. Bounds, A. Gladysiak, P. Schouwink, S. M. Moosavi, M. M. Maroto-Valer, J. A. Reimer, J. A. R. Navarro, T. K. Woo, S. Garcia, K. C. Stylianou, B. Smit, Nature 576 (2019) 253-256.
    [24]
    Y. Luo, S. Bag, O. Zaremba, A. Cierpka, J. Andreo, S. Wuttke, P. Friederich, M. Tsotsalas, Angew. Chem. Int. Ed. 61 (2022) e202200242.
    [25]
    Z. Zheng, O. Zhang, C. Borgs, J. T. Chayes, O. M. Yaghi, J. Am. Chem. Soc. 145 (2023) 18048-18062.
    [26]
    S. O. Odoh, C. J. Cramer, D. G. Truhlar, L. Gagliardi, Chem. Rev. 115 (2015) 6051-6111.
    [27]
    Q. Yang, D. Liu, C. Zhong, J.-R. Li, Chem. Rev. 113 (2013) 8261-8323.
    [28]
    T. Gensch, G. dos Passos Gomes, P. Friederich, E. Peters, T. Gaudin, R. Pollice, K. Jorner, A. Nigam, M. Lindner-D'Addario, M. S. Sigman, A. Aspuru-Guzik, J. Am. Chem. Soc. 144 (2022) 1205-1217.
    [29]
    S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, J. Himmelfarb, N. Bansal, S.-I. Lee, Nat. Mach. Intell. 2 (2020) 56-67.
    [30]
    O. Beeck, Rev. Mod. Phys. 17 (1945) 61-71.
    [31]
    S. Kancharlapalli, A. Gopalan, M. Haranczyk, R. Q. Snurr, J. Chem. Theory Comput. 17 (2021) 3052-3064.
    [32]
    D. Dubbeldam, S. Calero, D. E. Ellis, R. Q. Snurr, Mol. Simul. 42 (2016) 81-101.
    [33]
    T. K. Pal, D. De, P. K. Bharadwaj, Coord. Chem. Rev. 408 (2020) 213173.
    [34]
    A. Bavykina, N. Kolobov, I.S. Khan, J.A. Bau, A. Ramirez, J. Gascon, Chem. Rev. 120 (2020) 8468-8535.
    [35]
    J. F. Kurisingal, Y. Rachuri, Y. Gu, Y. Choe, D.-W. Park, Chem. Eng. J. 386 (2020) 121700.
    [36]
    X.-J. Hou, P. He, H. Li, X. Wang, J. Phys. Chem. C 117 (2013) 2824-2834.
    [37]
    Y. J. Colon, D. A. Gomez-Gualdron, R. Q. Snurr, Cryst. Growth Des. 17 (2017) 5801-5810.
    [38]
    R. Anderson, D. A. Gomez-Gualdron, CrystEngComm 21 (2019) 1653-1665.
    [39]
    M. O’Keeffe, M. A. Peskov, S. J. Ramsden, O. M. Yaghi, Acc. Chem. Res. 41 (2008) 1782-1789.
    [40]
    W. Mu, X. Huang, R. Zhong, W. Xia, J. Liu, R. Zou, CrystEngComm 17 (2015) 1637-1645.
    [41]
    Y. Ye, B. Ge, X. Meng, Y. Liu, S. Wang, X. Song, Z. Liang, Inorg. Chem. Front. 9 (2022) 391-400.
    [42]
    A.-g. Liu, Y. Chen, P.-da Liu, W. Qi, B. Li, Inorg. Chem. Front. 9 (2022) 4425-4432.
    [43]
    H. Chen, T. Zhang, S. Liu, H. Lv, L. Fan, X. Zhang, Inorg. Chem. 61 (2022) 11949-11958.
    [44]
    L. Jin, Q. Qin, L. Dong, S. Liu, S. Xie, J. Lu, A. Xu, J. Liu, H. Liu, Y. Yao, X. Hou, M. Fan, Chem. - Eur. J. 27 2021) 14947-14963.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (95) PDF downloads(5) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return