Volume 9 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
Yiwei Fu, Yi Wang, Jie Huang, Kejian Lu, Maochang Liu. Solar fuel production through concentrating light irradiation. Green Energy&Environment, 2024, 9(10): 1550-1580. doi: 10.1016/j.gee.2024.01.001
Citation: Yiwei Fu, Yi Wang, Jie Huang, Kejian Lu, Maochang Liu. Solar fuel production through concentrating light irradiation. Green Energy&Environment, 2024, 9(10): 1550-1580. doi: 10.1016/j.gee.2024.01.001

Solar fuel production through concentrating light irradiation

doi: 10.1016/j.gee.2024.01.001
  • The climate crisis necessitates the development of non-fossil energy sources. Harnessing solar energy for fuel production shows promise and offers the potential to utilize existing energy infrastructure. However, solar fuel production is in its early stages of development, constrained by low conversion efficiency and challenges in scaling up production. Concentrated solar energy (CSE) technology has matured alongside the rapid growth of solar thermal power plants. This review provides an overview of current CSE methods and solar fuel production, analyzes their integration compatibility, and delves into the theoretical mechanisms by which CSE impacts solar energy conversion efficiency and product selectivity in the context of photo-electrochemistry, thermochemistry, and photo-thermal co-catalysis for solar fuel production. The review also summarizes approaches to studying the photoelectric and photothermal effects of CSE. Lastly, it explores emerging novel CSE technology methods in the field of solar fuel production.

     

  • loading
  • [1]
    G.A. Ozin, Adv. Mater. 27 (2015) 1957-1963.
    [2]
    J. Lv, J. Xie, A.G.A. Mohamed, et al., Nat. Rev. Chem. 7 (2023) 91-105.
    [3]
    Y. Zhao, C. Ding, J. Zhu, et al., Angew. Chem. Int. Ed. 59 (2020) 9653-9658.
    [4]
    H. Nishiyama, T. Yamada, M. Nakabayashi, et al., Nature 598 (2021) 304-307.
    [5]
    J. Li, J. Ren, S. Li, et al., Green Energy Environ. 2023.
    [6]
    K. Wu, M. Cao, Q. Zeng, et al., Green Energy Environ. 8 (2023) 383-405.
    [7]
    T. Kodama, N. Gokon, Chem. Rev. 107 (2007) 4048-4077.
    [8]
    A. Steinfeld, Sol. Energy 78 (2005) 603-615.
    [9]
    C. Yuan, X. Liu, X. Wang, et al., Green Energy Environ. 2023.
    [10]
    S. Fang, Y.H. Hu, Chem. Soc. Rev. 51 (2022) 3609-3647.
    [11]
    C. Lv, X. Bai, S. Ning, et al., ACS Nano 17 (2023) 1725-1738.
    [12]
    M.R. Shaner, H.A. Atwater, N.S. Lewis, et al., Energy Environ. Sci. 9 (2016) 2354-2371.
    [13]
    R.J. Detz, J.N.H. Reek, B.C.C. Van Der Zwaan, Energy Environ. Sci. 11 (2018) 1653-1669.
    [14]
    Z. Li, S. Fang, H. Sun, et al., Adv. Energy Mater. 13 (2023) 2203019.
    [15]
    L.A. Weinstein, J. Loomis, B. Bhatia, et al., Chem. Rev. 115 (2015) 12797-12838.
    [16]
    J.A. Herron, J. Kim, A.A. Upadhye, et al., Energy Environ. Sci. 8 (2015) 126-157.
    [17]
    M. Romero, A. Steinfeld, Energy Environ. Sci. 5 (2012) 9234-9245.
    [18]
    D. Marxer, P. Furler, M. Takacs, et al., Energy Environ. Sci. 10 (2017) 1142-1149.
    [19]
    P. Zhou, I.A. Navid, Y. Ma, et al., Nature 613 (2023) 66-70.
    [20]
    X. Chen, S. Shen, L. Guo, et al., Chem. Rev. 110 (2010) 6503-6570.
    [21]
    S. Nishioka, F.E. Osterloh, X. Wang, et al., Nat. Rev. Methods Primers 3 (2023) 42.
    [22]
    D. Jing, H. Liu, X. Zhang, et al., Energy Convers. Manage. 50 (2009) 2919-2926.
    [23]
    K. Villa, X. Domenech, S. Malato, et al., Int. J. Hydrogen Energy 38 (2013) 12718-12724.
    [24]
    J.H. Kim, D. Hansora, P. Sharma, et al., Chem. Soc. Rev. 48 (2019) 1908-1971.
    [25]
    S.A. Bonke, M. Wiechen, D.R. Macfarlane, et al., Energy Environ. Sci. 8 (2015) 2791-2796.
    [26]
    K. Fujii, S. Nakamura, K. Watanabe, et al., MRS Online Proc. Lib. 1491 (2012) 52-57.
    [27]
    J. Jia, L.C. Seitz, J.D. Benck, et al., Nat. Commun. 7 (2016) 13237.
    [28]
    I. Holmes-Gentle, S. Tembhurne, C. Suter, et al., Nat. Energy 8 (2023) 586-596.
    [29]
    M.A. Khan, I. Al-Shankiti, A. Ziani, et al., Angew. Chem. Int. Ed. 59 (2020) 14802-14808.
    [30]
    A. Ziani, I. Al-Shankiti, M.A. Khan, et al., Energy & Fuels 34 (2020) 13179-13185.
    [31]
    E. Boutin, M. Patel, E. Kecsenovity, et al., Adv. Energy Mater. 12 (2022) 2200585.
    [32]
    S.C. Warren, K. Voitchovsky, H. Dotan, et al., Nat. Mater. 12 (2013) 842-849.
    [33]
    T.W. Kim, K.-S. Choi, Science 343 (2014) 990-994.
    [34]
    J. Gao, F. Sahli, C. Liu, et al., Joule 3 (2019) 2930-2941.
    [35]
    Q. Wang, C. Pornrungroj, S. Linley, et al., Nat. Energy 7 (2022) 13-24.
    [36]
    B.D. James, G.N. Baum, J. Perez, et al., 2009.(accessed 3 December 2023).
    [37]
    M.A. Green, K. Emery, Y. Hishikawa, et al., Prog. Photovoltaics Res. Appl. 24 (2016) 3-11.
    [38]
    M.V.N.S. Gupta, H. Baig, K.S. Reddy, et al., ACS Appl. Energy Mater. 3 (2020) 9002-9009.
    [39]
    Y. Yang, S. Niu, D. Han, et al., Adv. Energy Mater. 7 (2017) 1700555.
    [40]
    G. Segev, H. Dotan, K.D. Malviya, et al., Adv. Energy Mater. 6 (2016) 1500817.
    [41]
    A.B. Bocarsly, J.M. Bolts, P.G. Cummins, et al., Appl. Phys. Lett. 31 (1977) 568-570.
    [42]
    A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical methods: fundamentals and applications, John Wiley & Sons, New York, 2001.
    [43]
    K. Uosaki, H. Kita, J. Electrochem. Soc. 128 (1981) 2153.
    [44]
    M.A. Butler, J. Appl. Phys. 48 (2008) 1914-1920.
    [45]
    W.-H. Cheng, M.H. Richter, M.M. May, et al., ACS Energy Lett. 3 (2018) 1795-1800.
    [46]
    S. Tembhurne, F. Nandjou, S. Haussener, Nat. Energy 4 (2019) 399-407.
    [47]
    J. Tournet, Y. Lee, S.K. Karuturi, et al., ACS Energy Lett. 5 (2020) 611-622.
    [48]
    B.A. Pinaud, J.D. Benck, L.C. Seitz, et al., Energy Environ. Sci. 6 (2013) 1983-2002.
    [49]
    Q. Wang, T. Hisatomi, Q. Jia, et al., Nat. Mater. 15 (2016) 611-615.
    [50]
    J. Liu, Y. Liu, N. Liu, et al., Science 347 (2015) 970-974.
    [51]
    J.W. Ager, M.R. Shaner, K.A. Walczak, et al., Energy Environ. Sci. 8 (2015) 2811-2824.
    [52]
    L. Liao, Q. Zhang, Z. Su, et al., Nat. Nanotechnol. 9 (2014) 69-73.
    [53]
    C. Pornrungroj, V. Andrei, E. Reisner, J. Am. Chem. Soc. 145 (2023) 13709-13714.
    [54]
    T. Hisatomi, K. Domen, Nat. Catal. 2 (2019) 387-399.
    [55]
    S.M. Rodriguez, J.B. Galvez, M.M. Rubio, et al., Sol. Energy 77 (2004) 513-524.
    [56]
    Q. Wei, Y. Yang, J. Hou, et al., Sol. Energy 153 (2017) 215-223.
    [57]
    R. Ma, J. Sun, D.H. Li, et al., J. Catal. 392 (2020) 165-174.
    [58]
    A. Vilanova, P. Dias, J. Azevedo, et al., J. Power Sources 454 (2020) 227890.
    [59]
    B.M. Abraham, F. Schreiner, Ind. Eng. Chem. Fundam. 13 (1974) 305-310.
    [60]
    E.A. Fletcher, R.L. Moen, Science 197 (1977) 1050-1056.
    [61]
    C.N.R. Rao, S. Dey, Proc. Natl. Acad. Sci. 114 (2017) 13385-13393.
    [62]
    B. Xu, Y. Bhawe, M.E. Davis, Proc. Natl. Acad. Sci. 109 (2012) 9260-9264.
    [63]
    O. Oruc, I. Dincer, Fuel 286 (2021) 119325.
    [64]
    S. Abanades, G. Flamant, Sol. Energy 80 (2006) 1611-1623.
    [65]
    J.R. Scheffe, A. Steinfeld, Energy & Fuels 26 (2012) 1928-1936.
    [66]
    A. Steinfeld, Int. J. Hydrogen Energy 27 (2002) 611-619.
    [67]
    S. Abanades, P. Charvin, F. Lemont, et al., Int. J. Hydrogen Energy 33 (2008) 6021-6030.
    [68]
    R.B. Diver, J.E. Miller, M.D. Allendorf, et al., J. Sol. Energy Eng. 130 (2008) 041001.
    [69]
    R. Schappi, D. Rutz, F. Dahler, et al., Nature 601 (2022) 63-68.
    [70]
    D. O'keefe, C. Allen, G. Besenbruch, et al., Int. J. Hydrogen Energy 7 (1982) 381-392.
    [71]
    H. Kaneko, T. Miura, H. Ishihara, et al., Energy 32 (2007) 656-663.
    [72]
    A.L. Duigou, J.-M. Borgard, B. Larousse, et al., Int. J. Hydrogen Energy 32 (2007) 1516-1529.
    [73]
    M. Roeb, J.P. Sack, P. Rietbrock, et al., Sol. Energy 85 (2011) 634-644.
    [74]
    T. Kodama, N. Gokon, H.S. Cho, et al., AIP Conf. Proc. 2033 (2018) 130009.
    [75]
    M. Orfila, M. Linares, R. Molina, et al., Int. J. Hydrogen Energy 41 (2016) 19329-19338.
    [76]
    W.C. Chueh, C. Falter, M. Abbott, et al., Science 330 (2010) 1797-1801.
    [77]
    S. Zoller, E. Koepf, D. Nizamian, et al., Joule 6 (2022) 1606-1616.
    [78]
    C. Sattler, J. Sol. Energy Eng. 141 (2019) 020304.
    [79]
    B. Meredig, C. Wolverton, Phys. Rev. B 80 (2009) 245119.
    [80]
    J.M. Naik, C. Ritter, B. Bulfin, et al., Adv. Energy Mater. 11 (2021) 2003532.
    [81]
    R.B. Wexler, G.S. Gautam, E.B. Stechel, et al., J. Am. Chem. Soc. 143 (2021) 13212-13227.
    [82]
    R.B. Wexler, E.B. Stechel, E.A. Carter, in N. D. Sankir, M. Sankir (Eds.), Solar Fuels, Scrivener Publishing LLC, 2023, pp. 1-63.
    [83]
    J.R. Scheffe, A. Steinfeld, Mater. Today 17 (2014) 341-348.
    [84]
    C. Muhich, A. Steinfeld, J. Mater. Chem. A 5 (2017) 15578-15590.
    [85]
    M. Tou, R. Michalsky, A. Steinfeld, Joule 1 (2017) 146-154.
    [86]
    Y. Hao, A. Steinfeld, Sci. Bull. 62 (2017) 1099-1101.
    [87]
    J.E. Miller, M.D. Allendorf, R.B. Diver, et al., J. Mater. Sci. 43 (2008) 4714-4728.
    [88]
    R.J. Carrillo, J.R. Scheffe, Sol. Energy 156 (2017) 3-20.
    [89]
    R.F. Service, Science 326 (2009) 1472-1475.
    [90]
    Z.J. Wang, H. Song, H. Liu, et al., Angew. Chem. Int. Ed. 59 (2020) 8016-8035.
    [91]
    M. Bonn, S. Funk, C. Hess, et al., Science 285 (1999) 1042-1045.
    [92]
    S.W.L. Ng, M. Gao, W. Lu, et al., Adv. Funct. Mater. 31 (2021) 2104750.
    [93]
    H. Liu, H.-G. Ye, M. Gao, et al., Adv. Sci. 8 (2021) 2101232.
    [94]
    M. Gao, T. Zhang, G.W. Ho, Nano Res. 15 (2022) 9985-10005.
    [95]
    W.H. Lee, C.W. Lee, G.D. Cha, et al., Nat. Nanotechnol. 18 (2023) 1-9.
    [96]
    S. Guo, X. Li, J. Li, et al., Nat. Commun. 12 (2021) 1343.
    [97]
    Y. Wang, W. Huang, S. Guo, et al., Adv. Energy Mater. 11 (2021) 2102452.
    [98]
    Q. Hu, Y. Li, J. Wu, et al., Adv. Energy Mater. 13 (2023) 2300071.
    [99]
    Z. Zhang, Z. Gao, H. Liu, et al., ACS Appl. Energy Mater. 2 (2019) 8376-8380.
    [100]
    H. Wang, S. Fu, B. Shang, et al., Angew. Chem. Int. Ed. 62 (2023) e202305251.
    [101]
    Y. Tang, Z. Yang, C. Guo, et al., J. Mater. Chem. A 10 (2022) 12157-12167.
    [102]
    Y. Tang, T. Zhao, H. Han, et al., Adv. Sci. 10 (2023) 2300122.
    [103]
    L. Zhou, J.M.P. Martirez, J. Finzel, et al., Nat. Energy 5 (2020) 61-70.
    [104]
    H. Lin, S. Luo, H. Zhang, et al., Joule 6 (2022) 294-314.
    [105]
    L. Xu, Y. Ren, Y. Fu, et al., Chem. Eng. J. 468 (2023) 143831.
    [106]
    S. Bai, W. Jing, G. He, et al., ACS Nano 17 (2023) 10976-10986.
    [107]
    Y. Zhang, L. Yan, M. Guan, et al., Adv. Sci. 9 (2022) 2102978.
    [108]
    E. Kazuma, J. Jung, H. Ueba, et al., Science 360 (2018) 521-526.
    [109]
    Y. Zhang, W. Meng, D. Chen, et al., Nano Res. 15 (2022) 3894-3900.
    [110]
    L. Yan, F. Wang, S. Meng, ACS Nano 10 (2016) 5452-5458.
    [111]
    W. Chu, Q. Zheng, O.V. Prezhdo, et al., J. Am. Chem. Soc. 142 (2020) 3214-3221.
    [112]
    M. Quintanilla, L.M. Liz-Marzan, Nano Today 19 (2018) 126-145.
    [113]
    V.M. Donnelly, J.A. Mccaulley, J. Vac. Sci. Technol., A 8 (1990) 84-92.
    [114]
    C. Mao, H. Li, H. Gu, et al., Chem 5 (2019) 2702-2717.
    [115]
    F. Haupt, A. Imamoglu, M. Kroner, Phys. Rev. Appl. 2 (2014) 024001.
    [116]
    F. Seilmeier, M. Hauck, E. Schubert, et al., Phys. Rev. Appl. 2 (2014) 024002.
    [117]
    K. Binnemans, Chem. Rev. 109 (2009) 4283-4374.
    [118]
    W.R. Algar, K. Susumu, J.B. Delehanty, et al., Anal. Chem. 83 (2011) 8826-8837.
    [119]
    M. Runowski, P. Wozny, N. Stopikowska, et al., ACS Appl. Mater. Interfaces 12 (2020) 43933-43941.
    [120]
    K. Kim, J. Chung, G. Hwang, et al., ACS Nano 5 (2011) 8700-8709.
    [121]
    Y. Zhang, B. Yang, A. Ghafoor, et al., Natl. Sci. Rev. 6 (2019) 1169-1175.
    [122]
    J. Xu, X. Zhu, S. Tan, et al., Science 371 (2021) 818-822.
    [123]
    D. Zhang, C. Li, C. Zhang, et al., Sci. Adv. 2 (2016) e1600521.
    [124]
    S. Adhikari, P. Spaeth, A. Kar, et al., ACS Nano 14 (2020) 16414-16445.
    [125]
    J. Zhao, A. Matlock, H. Zhu, et al., Nat. Commun. 13 (2022) 7767.
    [126]
    B.-H. Lee, S. Park, M. Kim, et al., Nat. Mater. 18 (2019) 620-626.
    [127]
    C. Gao, J. Low, R. Long, et al., Chem. Rev. 120 (2020) 12175-12216.
    [128]
    P. Zhou, H. Chen, Y. Chao, et al., Nat. Commun. 12 (2021) 4412.
    [129]
    Z.-H. Xue, D. Luan, H. Zhang, et al., Joule 6 (2022) 92-133.
    [130]
    Y. Song, L. Ling, P. Westerhoff, et al., Nat. Commun. 12 (2021) 4101.
    [131]
    P. Simon Marques, B.D. Frank, A. Savateev, et al., Adv. Opt. Mater. 9 (2021) 2101139.
    [132]
    J.B. Perez-Sanchez, A. Koner, N.P. Stern, et al., Proc. Natl. Acad. Sci. 120 (2023) e2219223120.
    [133]
    L.W. Miller, M.I. Tejedor-Tejedor, M.A. Anderson, Environ. Sci. Technol. 33 (1999) 2070-2075.
    [134]
    J.J. Madhukeswara, V.V. Petrunin, Chem. Phys. Lett. 445 (2007) 309-314.
    [135]
    L. Ling, H. Tugaoen, J. Brame, et al., Environ. Sci. Technol. 51 (2017) 13319-13326.
    [136]
    Y. Huang, A. Xiao, G. Hou, et al., J. Mater. Chem. A 6 (2018) 20513-20522.
    [137]
    J. Yuen-Zhou, W. Xiong, T. Shegai, J. Chem. Phys. 156 (2022) 030401.
    [138]
    B. Xiang, R.F. Ribeiro, Y. Li, et al., Sci. Adv. 5 (2019) eaax5196.
    [139]
    Q. Ou, Y. Shao, Z. Shuai, J. Am. Chem. Soc. 143 (2021) 17786-17792.
    [140]
    Z. Zeng, B. Luo, D. Jing, et al., Sol. Energy 230 (2021) 538-548.
    [141]
    S. Tang, X. Xing, W. Yu, et al., iScience 23 (2020) 101012.
    [142]
    G. Peharz, F. Dimroth, U. Wittstadt, Int. J. Hydrogen Energy 32 (2007) 3248-3252.
    [143]
    F. Sastre, C. Versluis, N. Meulendijks, et al., ACS Omega 4 (2019) 7369-7377.
    [144]
    S. Docao, A.R. Koirala, M.G. Kim, et al., Energy Environ. Sci. 10 (2017) 628-640.
    [145]
    X. Liu, H. Shi, X. Meng, et al., Sol. RRL 5 (2021) 2100185.
    [146]
    Y. Liu, F. Wang, Z. Jiao, et al., Electrochem. Energy Rev. 5 (2022) 5.
    [147]
    R. Han, M.A. Melo, Jr., Z. Zhao, et al., J. Phys. Chem. C 124 (2020) 9724-9733.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (127) PDF downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return