Citation: | Yiwei Fu, Yi Wang, Jie Huang, Kejian Lu, Maochang Liu. Solar fuel production through concentrating light irradiation. Green Energy&Environment, 2024, 9(10): 1550-1580. doi: 10.1016/j.gee.2024.01.001 |
[1] |
G.A. Ozin, Adv. Mater. 27 (2015) 1957-1963.
|
[2] |
J. Lv, J. Xie, A.G.A. Mohamed, et al., Nat. Rev. Chem. 7 (2023) 91-105.
|
[3] |
Y. Zhao, C. Ding, J. Zhu, et al., Angew. Chem. Int. Ed. 59 (2020) 9653-9658.
|
[4] |
H. Nishiyama, T. Yamada, M. Nakabayashi, et al., Nature 598 (2021) 304-307.
|
[5] |
J. Li, J. Ren, S. Li, et al., Green Energy Environ. 2023.
|
[6] |
K. Wu, M. Cao, Q. Zeng, et al., Green Energy Environ. 8 (2023) 383-405.
|
[7] |
T. Kodama, N. Gokon, Chem. Rev. 107 (2007) 4048-4077.
|
[8] |
A. Steinfeld, Sol. Energy 78 (2005) 603-615.
|
[9] |
C. Yuan, X. Liu, X. Wang, et al., Green Energy Environ. 2023.
|
[10] |
S. Fang, Y.H. Hu, Chem. Soc. Rev. 51 (2022) 3609-3647.
|
[11] |
C. Lv, X. Bai, S. Ning, et al., ACS Nano 17 (2023) 1725-1738.
|
[12] |
M.R. Shaner, H.A. Atwater, N.S. Lewis, et al., Energy Environ. Sci. 9 (2016) 2354-2371.
|
[13] |
R.J. Detz, J.N.H. Reek, B.C.C. Van Der Zwaan, Energy Environ. Sci. 11 (2018) 1653-1669.
|
[14] |
Z. Li, S. Fang, H. Sun, et al., Adv. Energy Mater. 13 (2023) 2203019.
|
[15] |
L.A. Weinstein, J. Loomis, B. Bhatia, et al., Chem. Rev. 115 (2015) 12797-12838.
|
[16] |
J.A. Herron, J. Kim, A.A. Upadhye, et al., Energy Environ. Sci. 8 (2015) 126-157.
|
[17] |
M. Romero, A. Steinfeld, Energy Environ. Sci. 5 (2012) 9234-9245.
|
[18] |
D. Marxer, P. Furler, M. Takacs, et al., Energy Environ. Sci. 10 (2017) 1142-1149.
|
[19] |
P. Zhou, I.A. Navid, Y. Ma, et al., Nature 613 (2023) 66-70.
|
[20] |
X. Chen, S. Shen, L. Guo, et al., Chem. Rev. 110 (2010) 6503-6570.
|
[21] |
S. Nishioka, F.E. Osterloh, X. Wang, et al., Nat. Rev. Methods Primers 3 (2023) 42.
|
[22] |
D. Jing, H. Liu, X. Zhang, et al., Energy Convers. Manage. 50 (2009) 2919-2926.
|
[23] |
K. Villa, X. Domenech, S. Malato, et al., Int. J. Hydrogen Energy 38 (2013) 12718-12724.
|
[24] |
J.H. Kim, D. Hansora, P. Sharma, et al., Chem. Soc. Rev. 48 (2019) 1908-1971.
|
[25] |
S.A. Bonke, M. Wiechen, D.R. Macfarlane, et al., Energy Environ. Sci. 8 (2015) 2791-2796.
|
[26] |
K. Fujii, S. Nakamura, K. Watanabe, et al., MRS Online Proc. Lib. 1491 (2012) 52-57.
|
[27] |
J. Jia, L.C. Seitz, J.D. Benck, et al., Nat. Commun. 7 (2016) 13237.
|
[28] |
I. Holmes-Gentle, S. Tembhurne, C. Suter, et al., Nat. Energy 8 (2023) 586-596.
|
[29] |
M.A. Khan, I. Al-Shankiti, A. Ziani, et al., Angew. Chem. Int. Ed. 59 (2020) 14802-14808.
|
[30] |
A. Ziani, I. Al-Shankiti, M.A. Khan, et al., Energy & Fuels 34 (2020) 13179-13185.
|
[31] |
E. Boutin, M. Patel, E. Kecsenovity, et al., Adv. Energy Mater. 12 (2022) 2200585.
|
[32] |
S.C. Warren, K. Voitchovsky, H. Dotan, et al., Nat. Mater. 12 (2013) 842-849.
|
[33] |
T.W. Kim, K.-S. Choi, Science 343 (2014) 990-994.
|
[34] |
J. Gao, F. Sahli, C. Liu, et al., Joule 3 (2019) 2930-2941.
|
[35] |
Q. Wang, C. Pornrungroj, S. Linley, et al., Nat. Energy 7 (2022) 13-24.
|
[36] |
B.D. James, G.N. Baum, J. Perez, et al., 2009.(accessed 3 December 2023).
|
[37] |
M.A. Green, K. Emery, Y. Hishikawa, et al., Prog. Photovoltaics Res. Appl. 24 (2016) 3-11.
|
[38] |
M.V.N.S. Gupta, H. Baig, K.S. Reddy, et al., ACS Appl. Energy Mater. 3 (2020) 9002-9009.
|
[39] |
Y. Yang, S. Niu, D. Han, et al., Adv. Energy Mater. 7 (2017) 1700555.
|
[40] |
G. Segev, H. Dotan, K.D. Malviya, et al., Adv. Energy Mater. 6 (2016) 1500817.
|
[41] |
A.B. Bocarsly, J.M. Bolts, P.G. Cummins, et al., Appl. Phys. Lett. 31 (1977) 568-570.
|
[42] |
A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical methods: fundamentals and applications, John Wiley & Sons, New York, 2001.
|
[43] |
K. Uosaki, H. Kita, J. Electrochem. Soc. 128 (1981) 2153.
|
[44] |
M.A. Butler, J. Appl. Phys. 48 (2008) 1914-1920.
|
[45] |
W.-H. Cheng, M.H. Richter, M.M. May, et al., ACS Energy Lett. 3 (2018) 1795-1800.
|
[46] |
S. Tembhurne, F. Nandjou, S. Haussener, Nat. Energy 4 (2019) 399-407.
|
[47] |
J. Tournet, Y. Lee, S.K. Karuturi, et al., ACS Energy Lett. 5 (2020) 611-622.
|
[48] |
B.A. Pinaud, J.D. Benck, L.C. Seitz, et al., Energy Environ. Sci. 6 (2013) 1983-2002.
|
[49] |
Q. Wang, T. Hisatomi, Q. Jia, et al., Nat. Mater. 15 (2016) 611-615.
|
[50] |
J. Liu, Y. Liu, N. Liu, et al., Science 347 (2015) 970-974.
|
[51] |
J.W. Ager, M.R. Shaner, K.A. Walczak, et al., Energy Environ. Sci. 8 (2015) 2811-2824.
|
[52] |
L. Liao, Q. Zhang, Z. Su, et al., Nat. Nanotechnol. 9 (2014) 69-73.
|
[53] |
C. Pornrungroj, V. Andrei, E. Reisner, J. Am. Chem. Soc. 145 (2023) 13709-13714.
|
[54] |
T. Hisatomi, K. Domen, Nat. Catal. 2 (2019) 387-399.
|
[55] |
S.M. Rodriguez, J.B. Galvez, M.M. Rubio, et al., Sol. Energy 77 (2004) 513-524.
|
[56] |
Q. Wei, Y. Yang, J. Hou, et al., Sol. Energy 153 (2017) 215-223.
|
[57] |
R. Ma, J. Sun, D.H. Li, et al., J. Catal. 392 (2020) 165-174.
|
[58] |
A. Vilanova, P. Dias, J. Azevedo, et al., J. Power Sources 454 (2020) 227890.
|
[59] |
B.M. Abraham, F. Schreiner, Ind. Eng. Chem. Fundam. 13 (1974) 305-310.
|
[60] |
E.A. Fletcher, R.L. Moen, Science 197 (1977) 1050-1056.
|
[61] |
C.N.R. Rao, S. Dey, Proc. Natl. Acad. Sci. 114 (2017) 13385-13393.
|
[62] |
B. Xu, Y. Bhawe, M.E. Davis, Proc. Natl. Acad. Sci. 109 (2012) 9260-9264.
|
[63] |
O. Oruc, I. Dincer, Fuel 286 (2021) 119325.
|
[64] |
S. Abanades, G. Flamant, Sol. Energy 80 (2006) 1611-1623.
|
[65] |
J.R. Scheffe, A. Steinfeld, Energy & Fuels 26 (2012) 1928-1936.
|
[66] |
A. Steinfeld, Int. J. Hydrogen Energy 27 (2002) 611-619.
|
[67] |
S. Abanades, P. Charvin, F. Lemont, et al., Int. J. Hydrogen Energy 33 (2008) 6021-6030.
|
[68] |
R.B. Diver, J.E. Miller, M.D. Allendorf, et al., J. Sol. Energy Eng. 130 (2008) 041001.
|
[69] |
R. Schappi, D. Rutz, F. Dahler, et al., Nature 601 (2022) 63-68.
|
[70] |
D. O'keefe, C. Allen, G. Besenbruch, et al., Int. J. Hydrogen Energy 7 (1982) 381-392.
|
[71] |
H. Kaneko, T. Miura, H. Ishihara, et al., Energy 32 (2007) 656-663.
|
[72] |
A.L. Duigou, J.-M. Borgard, B. Larousse, et al., Int. J. Hydrogen Energy 32 (2007) 1516-1529.
|
[73] |
M. Roeb, J.P. Sack, P. Rietbrock, et al., Sol. Energy 85 (2011) 634-644.
|
[74] |
T. Kodama, N. Gokon, H.S. Cho, et al., AIP Conf. Proc. 2033 (2018) 130009.
|
[75] |
M. Orfila, M. Linares, R. Molina, et al., Int. J. Hydrogen Energy 41 (2016) 19329-19338.
|
[76] |
W.C. Chueh, C. Falter, M. Abbott, et al., Science 330 (2010) 1797-1801.
|
[77] |
S. Zoller, E. Koepf, D. Nizamian, et al., Joule 6 (2022) 1606-1616.
|
[78] |
C. Sattler, J. Sol. Energy Eng. 141 (2019) 020304.
|
[79] |
B. Meredig, C. Wolverton, Phys. Rev. B 80 (2009) 245119.
|
[80] |
J.M. Naik, C. Ritter, B. Bulfin, et al., Adv. Energy Mater. 11 (2021) 2003532.
|
[81] |
R.B. Wexler, G.S. Gautam, E.B. Stechel, et al., J. Am. Chem. Soc. 143 (2021) 13212-13227.
|
[82] |
R.B. Wexler, E.B. Stechel, E.A. Carter, in N. D. Sankir, M. Sankir (Eds.), Solar Fuels, Scrivener Publishing LLC, 2023, pp. 1-63.
|
[83] |
J.R. Scheffe, A. Steinfeld, Mater. Today 17 (2014) 341-348.
|
[84] |
C. Muhich, A. Steinfeld, J. Mater. Chem. A 5 (2017) 15578-15590.
|
[85] |
M. Tou, R. Michalsky, A. Steinfeld, Joule 1 (2017) 146-154.
|
[86] |
Y. Hao, A. Steinfeld, Sci. Bull. 62 (2017) 1099-1101.
|
[87] |
J.E. Miller, M.D. Allendorf, R.B. Diver, et al., J. Mater. Sci. 43 (2008) 4714-4728.
|
[88] |
R.J. Carrillo, J.R. Scheffe, Sol. Energy 156 (2017) 3-20.
|
[89] |
R.F. Service, Science 326 (2009) 1472-1475.
|
[90] |
Z.J. Wang, H. Song, H. Liu, et al., Angew. Chem. Int. Ed. 59 (2020) 8016-8035.
|
[91] |
M. Bonn, S. Funk, C. Hess, et al., Science 285 (1999) 1042-1045.
|
[92] |
S.W.L. Ng, M. Gao, W. Lu, et al., Adv. Funct. Mater. 31 (2021) 2104750.
|
[93] |
H. Liu, H.-G. Ye, M. Gao, et al., Adv. Sci. 8 (2021) 2101232.
|
[94] |
M. Gao, T. Zhang, G.W. Ho, Nano Res. 15 (2022) 9985-10005.
|
[95] |
W.H. Lee, C.W. Lee, G.D. Cha, et al., Nat. Nanotechnol. 18 (2023) 1-9.
|
[96] |
S. Guo, X. Li, J. Li, et al., Nat. Commun. 12 (2021) 1343.
|
[97] |
Y. Wang, W. Huang, S. Guo, et al., Adv. Energy Mater. 11 (2021) 2102452.
|
[98] |
Q. Hu, Y. Li, J. Wu, et al., Adv. Energy Mater. 13 (2023) 2300071.
|
[99] |
Z. Zhang, Z. Gao, H. Liu, et al., ACS Appl. Energy Mater. 2 (2019) 8376-8380.
|
[100] |
H. Wang, S. Fu, B. Shang, et al., Angew. Chem. Int. Ed. 62 (2023) e202305251.
|
[101] |
Y. Tang, Z. Yang, C. Guo, et al., J. Mater. Chem. A 10 (2022) 12157-12167.
|
[102] |
Y. Tang, T. Zhao, H. Han, et al., Adv. Sci. 10 (2023) 2300122.
|
[103] |
L. Zhou, J.M.P. Martirez, J. Finzel, et al., Nat. Energy 5 (2020) 61-70.
|
[104] |
H. Lin, S. Luo, H. Zhang, et al., Joule 6 (2022) 294-314.
|
[105] |
L. Xu, Y. Ren, Y. Fu, et al., Chem. Eng. J. 468 (2023) 143831.
|
[106] |
S. Bai, W. Jing, G. He, et al., ACS Nano 17 (2023) 10976-10986.
|
[107] |
Y. Zhang, L. Yan, M. Guan, et al., Adv. Sci. 9 (2022) 2102978.
|
[108] |
E. Kazuma, J. Jung, H. Ueba, et al., Science 360 (2018) 521-526.
|
[109] |
Y. Zhang, W. Meng, D. Chen, et al., Nano Res. 15 (2022) 3894-3900.
|
[110] |
L. Yan, F. Wang, S. Meng, ACS Nano 10 (2016) 5452-5458.
|
[111] |
W. Chu, Q. Zheng, O.V. Prezhdo, et al., J. Am. Chem. Soc. 142 (2020) 3214-3221.
|
[112] |
M. Quintanilla, L.M. Liz-Marzan, Nano Today 19 (2018) 126-145.
|
[113] |
V.M. Donnelly, J.A. Mccaulley, J. Vac. Sci. Technol., A 8 (1990) 84-92.
|
[114] |
C. Mao, H. Li, H. Gu, et al., Chem 5 (2019) 2702-2717.
|
[115] |
F. Haupt, A. Imamoglu, M. Kroner, Phys. Rev. Appl. 2 (2014) 024001.
|
[116] |
F. Seilmeier, M. Hauck, E. Schubert, et al., Phys. Rev. Appl. 2 (2014) 024002.
|
[117] |
K. Binnemans, Chem. Rev. 109 (2009) 4283-4374.
|
[118] |
W.R. Algar, K. Susumu, J.B. Delehanty, et al., Anal. Chem. 83 (2011) 8826-8837.
|
[119] |
M. Runowski, P. Wozny, N. Stopikowska, et al., ACS Appl. Mater. Interfaces 12 (2020) 43933-43941.
|
[120] |
K. Kim, J. Chung, G. Hwang, et al., ACS Nano 5 (2011) 8700-8709.
|
[121] |
Y. Zhang, B. Yang, A. Ghafoor, et al., Natl. Sci. Rev. 6 (2019) 1169-1175.
|
[122] |
J. Xu, X. Zhu, S. Tan, et al., Science 371 (2021) 818-822.
|
[123] |
D. Zhang, C. Li, C. Zhang, et al., Sci. Adv. 2 (2016) e1600521.
|
[124] |
S. Adhikari, P. Spaeth, A. Kar, et al., ACS Nano 14 (2020) 16414-16445.
|
[125] |
J. Zhao, A. Matlock, H. Zhu, et al., Nat. Commun. 13 (2022) 7767.
|
[126] |
B.-H. Lee, S. Park, M. Kim, et al., Nat. Mater. 18 (2019) 620-626.
|
[127] |
C. Gao, J. Low, R. Long, et al., Chem. Rev. 120 (2020) 12175-12216.
|
[128] |
P. Zhou, H. Chen, Y. Chao, et al., Nat. Commun. 12 (2021) 4412.
|
[129] |
Z.-H. Xue, D. Luan, H. Zhang, et al., Joule 6 (2022) 92-133.
|
[130] |
Y. Song, L. Ling, P. Westerhoff, et al., Nat. Commun. 12 (2021) 4101.
|
[131] |
P. Simon Marques, B.D. Frank, A. Savateev, et al., Adv. Opt. Mater. 9 (2021) 2101139.
|
[132] |
J.B. Perez-Sanchez, A. Koner, N.P. Stern, et al., Proc. Natl. Acad. Sci. 120 (2023) e2219223120.
|
[133] |
L.W. Miller, M.I. Tejedor-Tejedor, M.A. Anderson, Environ. Sci. Technol. 33 (1999) 2070-2075.
|
[134] |
J.J. Madhukeswara, V.V. Petrunin, Chem. Phys. Lett. 445 (2007) 309-314.
|
[135] |
L. Ling, H. Tugaoen, J. Brame, et al., Environ. Sci. Technol. 51 (2017) 13319-13326.
|
[136] |
Y. Huang, A. Xiao, G. Hou, et al., J. Mater. Chem. A 6 (2018) 20513-20522.
|
[137] |
J. Yuen-Zhou, W. Xiong, T. Shegai, J. Chem. Phys. 156 (2022) 030401.
|
[138] |
B. Xiang, R.F. Ribeiro, Y. Li, et al., Sci. Adv. 5 (2019) eaax5196.
|
[139] |
Q. Ou, Y. Shao, Z. Shuai, J. Am. Chem. Soc. 143 (2021) 17786-17792.
|
[140] |
Z. Zeng, B. Luo, D. Jing, et al., Sol. Energy 230 (2021) 538-548.
|
[141] |
S. Tang, X. Xing, W. Yu, et al., iScience 23 (2020) 101012.
|
[142] |
G. Peharz, F. Dimroth, U. Wittstadt, Int. J. Hydrogen Energy 32 (2007) 3248-3252.
|
[143] |
F. Sastre, C. Versluis, N. Meulendijks, et al., ACS Omega 4 (2019) 7369-7377.
|
[144] |
S. Docao, A.R. Koirala, M.G. Kim, et al., Energy Environ. Sci. 10 (2017) 628-640.
|
[145] |
X. Liu, H. Shi, X. Meng, et al., Sol. RRL 5 (2021) 2100185.
|
[146] |
Y. Liu, F. Wang, Z. Jiao, et al., Electrochem. Energy Rev. 5 (2022) 5.
|
[147] |
R. Han, M.A. Melo, Jr., Z. Zhao, et al., J. Phys. Chem. C 124 (2020) 9724-9733.
|