Turn off MathJax
Article Contents
Bin Yue, Jianhua Wang, Shanshan Liu, Guangjun Wu, Bin Qin, Landong Li. Efficient nitric oxide capture and reduction on Ni-loaded CHA zeolites. Green Energy&Environment. doi: 10.1016/j.gee.2023.12.005
Citation: Bin Yue, Jianhua Wang, Shanshan Liu, Guangjun Wu, Bin Qin, Landong Li. Efficient nitric oxide capture and reduction on Ni-loaded CHA zeolites. Green Energy&Environment. doi: 10.1016/j.gee.2023.12.005

Efficient nitric oxide capture and reduction on Ni-loaded CHA zeolites

doi: 10.1016/j.gee.2023.12.005
  • As a prominent contributor to air pollution, nitric oxide (NO) has emerged as a critical agent causing detrimental environmental and health ramifications. To mitigate emissions and facilitate downstream utilization, adsorption-based techniques offer a compelling approach for direct NO capture from both stationary and mobile sources. In this study, a comprehensive exploration of NO capture under oxygen-lean and oxygen-rich conditions was conducted, employing Ni ion-exchanged chabazite (CHA-type) zeolites as the adsorbents. Remarkably, Ni/Na-CHA zeolites, with Ni loadings ranging from 3 to 4 wt%, demonstrate remarkable dynamic uptake capacities and exhibit exceptional NO capture efficiencies (NO-to-Ni ratio) for both oxygen-lean (0.17–0.31 mmol/g, 0.32–0.43 of NO/Ni) and oxygen-rich (1.64–1.18 mmol/g) under ambient conditions. An NH3 reduction methodology was designed for the regeneration of absorbents at a relatively low temperature of 673 K. Comprehensive insights into the NO adsorption mechanism were obtained through temperature-programmed desorption experiments, in situ Fourier transform infrared spectroscopy, and density functional theory calculations. It is unveiled that NO and NO2 exhibit propensity to coordinate with Ni2+ via N-terminal or O-terminal, yielding thermally stable complexes and metastable species, respectively, while the low-temperature desorption substances are generated in close proximity to Na+. This study not only offers micro-level perspectives but imparts crucial insights for the advancement of capture and reduction technologies utilizing precious-metal-free materials.

     

  • loading
  • [1]
    P.O. Wennberg, D. Dabdub, Science 319 (2008) 1624-1625.
    [2]
    S.K. Grange, A.C. Lewis, S.J. Moller, D.C. Carslaw, Nat. Geosci. 10 (2017) 914-918.
    [3]
    M. Almaraz, E. Bai, C. Wang, J. Trousdell, S. Conley, I. Faloona, B.Z. Houlton, Sci. Adv. 4 (2018) eaao3477.
    [4]
    Y. Wang, J. Han, M. Chen, W. Lv, P. Meng, W. Gao, X. Meng, W. Fan, J. Xu, W. Yan, J. Yu, Angew. Chem. Int. Ed. 62 (2023) e202306174.
    [5]
    J.L. Laughner, R.C. Cohen, Science 366 (2019) 723-727.
    [6]
    J. Li, X. Meng, F.-S. Xiao, Chem Catal. 2 (2022) 253-261.
    [7]
    S.C. Anenberg, J. Miller, R. Minjares, L. Du, D.K. Henze, F. Lacey, C.S. Malley, L. Emberson, V. Franco, Z. Klimont, C. Heyes, Nature 545 (2017) 467-471.
    [8]
    T. Karl, C. Lamprecht, M. Graus, A. Cede, M. Tiefengraber, J.V.-G. de Arellano, D. Gurarie, D. Lenschow, Sci. Adv. 9 (2023) eadd2365.
    [9]
    S. Roy, A. Baiker, Chem. Rev. 109 (2009) 4054-4091.
    [10]
    B. Yue, X. Lian, S. Liu, G. Wu, J. Xu, L. Li, Chem. Eng. J. 462 (2023) 142300.
    [11]
    J.A. Nasir, J. Guan, T.W. Keal, A.W. Desmoutier, Y. Lu, A.M. Beale, C.R.A. Catlow, A.A. Sokol, J. Am. Chem. Soc. 145 (2023) 247-259.
    [12]
    M. Chen, J. Li, W. Xue, S. Wang, J. Han, Y. Wei, D. Mei, Y. Li, J. Yu, J. Am. Chem. Soc. 144 (2022) 12816-12824.
    [13]
    Y. Wei, S. Wang, M. Chen, J. Han, G. Yang, Q. Wang, J. Di, H. Li, W. Wu, J. Yu, Adv. Mater. (2023) 2302912.
    [14]
    T.V.W. Janssens, P.N.R. Vennestroem, Science 357 (2017) 866-867.
    [15]
    X.-G. Li, Y.-H. Dong, H. Xian, W.Y. Hernandez, M. Meng, H.-H. Zou, A.-J. Ma, T.-Y. Zhang, Z. Jiang, N. Tsubaki, P. Vernoux, Energy Environ. Sci. 4 (2011) 3351.
    [16]
    C.H. Kim, G. Qi, K. Dahlberg, W. Li, Science 327 (2010) 1624-1627.
    [17]
    J. Li, X. Han, X. Zhang, A.M. Sheveleva, Y. Cheng, F. Tuna, E.J.L. McInnes, L.J.M. McPherson, S.J. Teat, L.L. Daemen, A.J. Ramirez-Cuesta, M. Schroder, S. Yang, Nat. Chem. 11 (2019) 1085-1090.
    [18]
    Y.-W. Leea, D.-K. Choi, J.-W. Park, Carbon 40 (2002) 1409-1417.
    [19]
    S. Kawai, S. Saito, S. Osumi, S. Yamaguchi, A.S. Foster, P. Spijker, E. Meyer, Nat. Commun. 6 (2015) 8098.
    [20]
    Y. Yin, C. Wang, L. Qiu, X. Li, F. Zhao, J. Yu, J. Han, H. Chang, Green Energy Environ. (2023), https://doi.org/10.1016/j.gee.2023.05.004.
    [21]
    B. Xiao, P.S. Wheatley, X. Zhao, A.J. Fletcher, S.Fox, A.G. Rossi, I.L. Megson, S. Bordiga, L. Regli, K.M. Thomas, R.E. Morris, J. Am. Chem. Soc. 129 (2007) 1203-1209.
    [22]
    X. Han, Y. Hong, Y. Ma, W. Lu, J. Li, L. Lin, A.M. Sheveleva, F. Tuna, E.J.L. McInnes, C. Dejoie, J. Sun, S. Yang, M. Schroder, J. Am. Chem. Soc. 142 (2020) 15235-15239.
    [23]
    X. Han, H.G.W. Godfrey, L. Briggs, A.J. Davies, Y. Cheng, L.L. Daemen, A.M. Sheveleva, F. Tuna, E.J.L. McInnes, J. Sun, C. Drathen, M.W. George, A.J. Ramirez-Cuesta, K.M. Thomas, S. Yang, M. Schroder, Nat. Mater. 17 (2018) 691-696.
    [24]
    X. Han, S. Yang, M. Schroder, Nat. Rev. Chem. 3 (2019) 108-118.
    [25]
    H. Deng, H. Yi, X. Tang, Q. Yu, P. Ning, L. Yang, Chem. Eng. J. 188 (2012) 77-85.
    [26]
    A. Sultana, R. Loenders, O. Monticelli, C. Kirschhock, P.A. Jacobs, J.A. Martens, Angew. Chem. Int. Ed. 39 (2000) 2934-2937.
    [27]
    P.S. Wheatley, A.R. Butler, M.S. Crane, S. Fox, B. Xiao, A.G. Rossi, I.L. Megson, R.E. Morris, J. Am. Chem. Soc. 128 (2006) 502-509.
    [28]
    R.E. Morris, P.S. Wheatley, Angew. Chem. Int. Ed. 47 (2008) 4966-4981.
    [29]
    R. Zhang, N. Liu, Z. Lei, B. Chen, Chem. Rev. 116 (2016) 3658-3721.
    [30]
    P. Xie, T. Pu, G. Aranovich, J. Guo, M. Donohue, A. Kulkarni, C. Wang, Nat. Catal. 4 (2021) 144-156.
    [31]
    M.L. Pinto, J. Rocha, J.R.B. Gomes, J. Pires, J. Am. Chem. Soc. 133 (2011) 6396-6402.
    [32]
    H.-Y. Chen, J.E. Collier, D. Liu, L. Mantarosie, D. Duran-Martin, V. Novak, R.R. Rajaram, D. Thompsett, Catal. Lett. 146 (2016) 1706-1711.
    [33]
    K. Khivantsev, N.R. Jaegers, L. Kovarik, J.C. Hanson, F.(F.) Tao, Y. Tang, X. Zhang, I.Z. Koleva, H.A. Aleksandrov, G.N. Vayssilov, Y. Wang, F. Gao, J. Szanyi, Angew. Chem. Int. Ed. 57 (2018) 16672-16677.
    [34]
    K. Khivantsev, X. Wei, L. Kovarik, N.R. Jaegers, E.D. Walter, P. Tran, Y. Wang, J. Szanyi, Angew. Chem. Int. Ed. 61 (2022) e202107554.
    [35]
    Y. Li, D. Chen, X. Xu, X. Wang, R. Kang, M. Fu, Y. Guo, P. Chen, Y. Li, D. Ye, Environ. Sci. Technol. 57 (2023) 3467-3485.
    [36]
    Y. Guo, P. Li, Z. Wei, G. Wu, L. Li, Dalton Trans. 52 (2023) 9398-9405.
    [37]
    G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169-11186.
    [38]
    G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6 (1996) 15-50.
    [39]
    P.E. Blochl, Phys. Rev. B 50 (1994) 17953-17979.
    [40]
    G. Henkelman, H. Jonsson, J. Chem. Phys. 113 (2000) 9978-9985.
    [41]
    E. Passaglia, Am. Mineral. 55 (1970) 7-8.
    [42]
    F. Neese, WIREs Comput. Mol. Sci. 8 (2018) e1327.
    [43]
    A.D. Becke, J. Chem. Phys. 98 (1993) 5648-5652.
    [44]
    P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98 (1994) 11623-11627.
    [45]
    F. Weigenda, R. Ahlrichs, Phys. Chem. Chem. Phys. 7 (2005) 3297-3305.
    [46]
    T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580-592.
    [47]
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 14 (1996) 33-38.
    [48]
    K.I. Hadjiivanov, Catal. Rev. 42 (2000) 71-144.
    [49]
    A.M. Ebrahim, B. Levasseur, T.J. Bandosz, Langmuir 29 (2013) 168-174.
    [50]
    A.M. Ebrahim, T.J. Bandosz, Microporous Mesoporous Mater. 188 (2014) 149-162.
    [51]
    S. Shang, C. Yang, C. Wang, J. Qin, Y. Li, Q. Gu, J. Shang, Angew. Chem. Int. Ed. 59 (2020) 1-5.
    [52]
    P.G. Wang, T.B. Cai, N. Taniguchi, Nitric oxide donors: For pharmaceutical and biological applications, Weinheim, Germany, 2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (74) PDF downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return