Volume 9 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
Yibo Liu, Xing Hu, Chenxi Liu, Shan Zhu, Kezhu Jiang, Feng Liu, Shijian Zheng. Construction of Pd-doped RuO2 nanosheets for efficient and stable acidic water oxidation. Green Energy&Environment, 2024, 9(6): 937-948. doi: 10.1016/j.gee.2023.12.003
Citation: Yibo Liu, Xing Hu, Chenxi Liu, Shan Zhu, Kezhu Jiang, Feng Liu, Shijian Zheng. Construction of Pd-doped RuO2 nanosheets for efficient and stable acidic water oxidation. Green Energy&Environment, 2024, 9(6): 937-948. doi: 10.1016/j.gee.2023.12.003

Construction of Pd-doped RuO2 nanosheets for efficient and stable acidic water oxidation

doi: 10.1016/j.gee.2023.12.003
  • RuO2 has been considered a potential alternative to commercial IrO2 for the oxygen evolution reaction (OER) due to its superior intrinsic activity. However, its inherent structure dissolution in acidic environments restricts its commercial applications. In this study, we report a novel Pd-doped ruthenium oxide (Pd-RuO2) nanosheet catalyst that exhibits improved activity and stability through a synergistic effect of Pd modulation of Ru electronic structure and the two-dimensional structure. The catalyst exhibits excellent performance, achieving an overpotential of only 204 mV at a current density of 10 mA cm-2. Impressively, after undergoing 8000 cycles of cyclic voltammetry testing, the overpotential merely decreased by 5 mV. The PEM electrolyzer with Pd0.08Ru0.92O2 as an anode catalyst survived an almost 130 h operation at 200 mA cm-2. To elucidate the underlying mechanisms responsible for the enhanced stability, we conducted an X-ray photoelectron spectroscopy (XPS) analysis, which reveals that the electron transfer from Pd to Ru effectively circumvents the over-oxidation of Ru, thus playing a crucial role in enhancing the catalyst's stability. Furthermore, density functional theory (DFT) calculations provide compelling evidence that the introduction of Pd into RuO2 effectively modulates electron correlations and facilitates the electron transfer from Pd to Ru, thereby preventing the over-oxidation of Ru. Additionally, the application of the two-dimensional structure effectively inhibited the aggregation and growth of nanoparticles, further bolstering the structural integrity of the catalyst.

     

  • loading
  • [1]
    S. Chu, A. Majumdar, Nature 488 (2012) 294-303.
    [2]
    Z.W. Seh, J. Kibsgaard, C.F. Dickens, I.B. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Science 355 (2017) eaad4998.
    [3]
    M. Carmo, D.L. Fritz, J. Merge, D. Stolten, Int. J. Hydrog. Energy 38 (2013) 4901-4934.
    [4]
    L. An, C. Wei, M. Lu, H. Liu, Y. Chen, G.G. Scherer, A.C. Fisher, P. Xi, Z.J. Xu, C.-H. Yan, Adv. Mater. 33 (2021) 2006328.
    [5]
    H. Chen, L. Shi, X. Liang, L. Wang, T. Asefa, X. Zou, Angew. Chem. Int. Ed. 59 (2020) 19654-19658.
    [6]
    Y. Wen, P. Chen, L. Wang, S. Li, Z. Wang, J. Abed, X. Mao, Y. Min, C.T. Dinh, P. De Luna, R. Huang, L. Zhang, L. Wang, L. Wang, R.J. Nielsen, H. Li, T. Zhuang, C. Ke, O. Voznyy, Y. Hu, Y. Li, W.A. Goddard, Iii, B. Zhang, H. Peng, E.H. Sargent, J. Am. Chem. Soc. 143 (2021) 6482-6490.
    [7]
    C. Spoeri, J.T.H. Kwan, A. Bonakdarpour, D.P. Wilkinson, P. Strasser, Angew. Chem. Int. Ed. 56 (2017) 5994-6021.
    [8]
    L. Li, P. Wang, Q. Shao, X. Huang, Adv. Mater. 33 (2021) 2004243.
    [9]
    S. Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A.M. Mingers, W.T. Fu, O. Diaz-Morales, Z. Li, T. Oellers, L. Fruchter, A. Ludwig, K.J.J. Mayrhofer, M.T.M. Koper, S. Cherevko, Nat. Catal. 1 (2018) 508-515.
    [10]
    F.-Y. Chen, Z.-Y. Wu, Z. Adler, H. Wang, Joule 5 (2021) 1704-1731.
    [11]
    O. Diaz-Morales, S. Raaijman, R. Kortlever, P.J. Kooyman, T. Wezendonk, J. Gascon, W.T. Fu, M.T.M. Koper, Nat. Commun. 7 (2016) 12363.
    [12]
    S. Hao, H. Sheng, M. Liu, J. Huang, G. Zheng, F. Zhang, X. Liu, Z. Su, J. Hu, Y. Qian, L. Zhou, Y. He, B. Song, L. Lei, X. Zhang, S. Jin, Nat. Nanotechnol. 16 (2021) 1371-U1376.
    [13]
    J. Yin, J. Jin, M. Lu, B. Huang, H. Zhang, Y. Peng, P. Xi, C.-H. Yan, J. Am. Chem. Soc. 142 (2020) 18378-18386.
    [14]
    F. Zhao, B. Wen, W. Niu, Z. Chen, C. Yan, A. Selloni, C.G. Tully, X. Yang, B.E. Koel, J. Am. Chem. Soc. 143 (2021) 15616-15623.
    [15]
    H. Su, W. Zhou, W. Zhou, Y. Li, L. Zheng, H. Zhang, M. Liu, X. Zhang, X. Sun, Y. Xu, F. Hu, J. Zhang, T. Hu, Q. Liu, S. Wei, Nat. Commun. 12 (2021) 6118.
    [16]
    Z. Ya-Rong, V. Jerome, W. Zhenbin, Z. Ke, H. Degenhart, K. Kevin, L. Ting-Wei, P. Francesco, A. Thomas, F. Jarmo, S. Soren Bertelsen, S. Niklas Moerch, M. Choongman, L. Pei, B. Sara, A. Sandra Van, C. Ang, A. Megha, K.N. Jens, K. Jakob, C. Ib, Nat. Energy 7 (2021) 55-64.
    [17]
    Z. Lei, T. Wang, B. Zhao, W. Cai, Y. Liu, S. Jiao, Q. Li, R. Cao, M. Liu, Adv. Energy Mater. 10 (2020) 2000478.
    [18]
    X.-K. Gu, J.C.A. Camayang, S. Samira, E. Nikolla, J Catal 388 (2020) 130-140.
    [19]
    J. Shan, T. Ling, K. Davey, Y. Zheng, S.Z. Qiao, Adv. Mater. 31 (2019) 1900510.
    [20]
    Y. Lin, Z. Tian, L. Zhang, J. Ma, Z. Jiang, B.J. Deibert, R. Ge, L. Chen, Nat. Commun. 10 (2019) 162.
    [21]
    L. Cao, Q. Luo, J. Chen, L. Wang, Y. Lin, H. Wang, X. Liu, X. Shen, W. Zhang, W. Liu, Z. Qi, Z. Jiang, J. Yang, T. Yao, Nat. Commun. 10 (2019) 4849.
    [22]
    S. Hao, M. Liu, J. Pan, X. Liu, X. Tan, N. Xu, Y. He, L. Lei, X. Zhang, Nat. Commun. 11 (2020) 5368.
    [23]
    H. Sun, X. Xu, Y. Song, W. Zhou, Z. Shao, Adv. Funct. Mater. 31 (2021) 2009779.
    [24]
    M. Retuerto, L. Pascual, F. Calle-Vallejo, P. Ferrer, D. Gianolio, A.G. Pereira, A. Garcia, J. Torrero, M.T. Fernandez-Diaz, P. Bencok, M.A. Pena, J.L.G. Fierro, S. Rojas, Nat. Commun. 10 (2019) 2041.
    [25]
    T. Chao, Y. Hu, X. Hong, Y. Li, ChemElectroChem 6 (2019) 289-303.
    [26]
    H. Jin, S. Choi, G.J. Bang, T. Kwon, H.S. Kim, S.J. Lee, Y. Hong, D.W. Lee, H.S. Park, H. Baik, Y. Jung, S.J. Yoo, K. Lee, Energy Environ. Sci. 15 (2021) 1119-1130.
    [27]
    N. Hodnik, G. Dehm, K.J.J. Mayrhofer, Acc. Chem. Res. 49 (2016) 2015-2022.
    [28]
    K. Du, L. Zhang, J. Shan, J. Guo, J. Mao, C.C. Yang, C.H. Wang, Z. Hu, T. Ling, Nat. Commun. 13 (2022) 5448.
    [29]
    K. Liao, X. Wang, Y. Sun, D. Tang, M. Han, P. He, X. Jiang, T. Zhang, H. Zhou, Energy Environ. Sci. 8 (2015) 1992-1997.
    [30]
    Z.L. Zhao, Q. Wang, X. Huang, Q. Feng, S. Gu, Z. Zhang, H. Xu, L. Zeng, M. Gu, H. Li, Energy Environ. Sci. 13 (2020) 5143-5151.
    [31]
    S.C. Sun, H. Jiang, Z.Y. Chen, Q. Chen, M.Y. Ma, L. Zhen, B. Song, C.Y. Xu, Angew. Chem. Int. Ed. 61 (2022) e202202519.
    [32]
    J. Zhang, R. Lin, Y. Zhao, H. Wang, S. Liu, X. Cai, ACS Sustain. Chem. Eng. 11 (2023) 9489-9497.
    [33]
    S.R. Ede, Z. Luo, J. Mater. Chem. A 9 (2021) 20131-20163.
    [34]
    H. Sun, W. Jung, J. Mater. Chem. A 9 (2021) 15506-15521.
    [35]
    J.T. Mefford, X. Rong, A.M. Abakumov, W.G. Hardin, S. Dai, A.M. Kolpak, K.P. Johnston, K.J. Stevenson, Nat. Commun. 7 (2016) 11053.
    [36]
    A. Grimaud, O. Diaz-Morales, B. Han, W.T. Hong, Y.-L. Lee, L. Giordano, K.A. Stoerzinger, M.T.M. Koper, Y. Shao-Horn, Nat. Chem. 9 (2017) 457-465.
    [37]
    Wu, Qiuli, Jiang, Kang, Han, Jiuhui, Chen, Dechao, Luo, Min, Lan, Jiao, Peng, Ming, Tan, Yongwen, Sci. China Mater. 65 (2022) 1262-1268.
    [38]
    S. Chen, H. Huang, P. Jiang, K. Yang, J. Diao, S. Gong, S. Liu, M. Huang, H. Wang, Q. Chen, ACS Catal. 10 (2019) 1152-1160.
    [39]
    J. Su, R. Ge, K. Jiang, Y. Dong, F. Hao, Z. Tian, G. Chen, L. Chen, Adv. Mater. 30 (2018) e1801351.
    [40]
    D. Zhang, M. Li, X. Yong, H. Song, G.I.N. Waterhouse, Y. Yi, B. Xue, D. Zhang, B. Liu, S. Lu, Nat. Commun. 14 (2023) 2517.
    [41]
    Y. Wang, R. Yang, Y. Ding, B. Zhang, H. Li, B. Bai, M. Li, Y. Cui, J. Xiao, Z.-S. Wu, Nat. Commun. 14 (2023) 1412.
    [42]
    Z. Shi, J. Li, Y. Wang, S. Liu, J. Zhu, J. Yang, X. Wang, J. Ni, Z. Jiang, L. Zhang, Y. Wang, C. Liu, W. Xing, J. Ge, Nat. Commun. 14 (2023) 843.
    [43]
    R. Ge, L. Li, J. Su, Y. Lin, Z. Tian, L. Chen, Adv. Energy Mater. 9 (2019) 1901313.
    [44]
    T.W. Van Deelen, C. Hernandez Mejia, K.P. De Jong, Nat. Catal. 2 (2019) 955-970.
    [45]
    S. Li, B. Chen, Y. Wang, M.-Y. Ye, P.A. Van Aken, C. Cheng, A. Thomas, Nat. Mater. 20 (2021) 1240-1247.
    [46]
    Q. Ma, S. Mu, Interdisciplinary Materials 2 (2023) 53-90.
    [47]
    H.Y. Lin, Z.X. Lou, Y. Ding, X. Li, F. Mao, H.Y. Yuan, P.F. Liu, H.G. Yang, Small Methods 6 (2022) 2201130.
    [48]
    Y. Wang, Z. Zhang, Y. Mao, X. Wang, Energy Environ. Sci. 13 (2020) 3993-4016.
    [49]
    X. Yin, Y. Hua, Z. Gao, Renewables 1 (2023) 190-226.
    [50]
    S. Laha, Y. Lee, F. Podjaski, D. Weber, V. Duppel, L.M. Schoop, F. Pielnhofer, C. Scheurer, K. Muller, U. Starke, K. Reuter, B.V. Lotsch, Adv. Energy Mater. 9 (2019) 1803795.
    [51]
    J. Fan, Y. Mu, X. Ge, L. Zhang, W. Li, H. Dong, D. Wang, W. Zhang, J. Ma, W. Zheng, X. Cui, ACS Catal. 13 (2023) 4120-4126.
    [52]
    V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, Comput. Phys. Commun. 267 (2021) 108033.
    [53]
    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104.
    [54]
    M.H.V. Huynh, and T.J. Meyer, Chem. Rev. 107 (2007) 5004-5064.
    [55]
    K. Momma, F. Izumi, J. Appl. Crystallogr. 41 (2008) 653-658.
    [56]
    J.K. Norskov, M. Scheffler, H. Toulhoat, MRS Bull. 31 (2006) 669-674.
    [57]
    S.J. Hwang, S.-K. Kim, J.-G. Lee, S.-C. Lee, J.H. Jang, P. Kim, T.-H. Lim, Y.-E. Sung, S.J. Yoo, J. Am. Chem. Soc. 134 (2012) 19508-19511.
    [58]
    Z.-Y. Wu, F.-Y. Chen, B. Li, S.-W. Yu, Y.Z. Finfrock, D.M. Meira, Q.-Q. Yan, P. Zhu, M.-X. Chen, T.-W. Song, Z. Yin, H.-W. Liang, S. Zhang, G. Wang, H. Wang, Nat. Mater. 22 (2022) 100-108.
    [59]
    H. Liu, Z. Zhang, J. Fang, M. Li, M.G. Sendeku, X. Wang, H. Wu, Y. Li, J. Ge, Z. Zhuang, D. Zhou, Y. Kuang, X. Sun, Joule 7 (2023) 558-573.
    [60]
    J. He, W. Li, P. Xu, J. Sun, Appl. Catal., B 298 (2021) 120528.
    [61]
    L. Zhang, H. Jang, H. Liu, M.G. Kim, D. Yang, S. Liu, X. Liu, J. Cho, Angew. Chem. Int. Ed. 60 (2021) 18821-18829.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (102) PDF downloads(7) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return