Volume 9 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
Minhua Ai, Zihang Peng, Xidi Li, Faryal Idrees, Xiangwen Zhang, Ji-Jun Zou, Lun Pan. Piezoelectric-enhanced n-TiO2/BaTiO3/p-TiO2 heterojunction for highly efficient photoelectrocatalysis. Green Energy&Environment, 2024, 9(9): 1466-1476. doi: 10.1016/j.gee.2023.12.001
Citation: Minhua Ai, Zihang Peng, Xidi Li, Faryal Idrees, Xiangwen Zhang, Ji-Jun Zou, Lun Pan. Piezoelectric-enhanced n-TiO2/BaTiO3/p-TiO2 heterojunction for highly efficient photoelectrocatalysis. Green Energy&Environment, 2024, 9(9): 1466-1476. doi: 10.1016/j.gee.2023.12.001

Piezoelectric-enhanced n-TiO2/BaTiO3/p-TiO2 heterojunction for highly efficient photoelectrocatalysis

doi: 10.1016/j.gee.2023.12.001
  • Charge separation is critical for achieving efficient solar-to-hydrogen conversion, whereas piezoelectric-enhanced photoelectrochemical (PEC) systems can effectively modulate band bending and charge migration. Herein, we design an n-TiO2/BaTiO3/p-TiO2 (TBTm) heterojunction in which the piezoelectric BaTiO3 layer is sandwiched between n-TiO2 and p-TiO2. The built-in electric field of TBTm can provide a strong driving force to accelerate carrier separation and prolong carrier lifetime. Consequently, the TBT3 achieves a prominent photocurrent density, as high as 2.13 mA cm-2 at 1.23 V versus reversible hydrogen electrode (RHE), which is 2.4- and 1.5-times higher than TiO2 and TiO2-BaTiO3 heterojunction, respectively. Driven by mechanical deformation, the induced dipole polarization can further regulate built-in electric fields, and the piezoelectric photocurrent density of TBT3-800 is 2.84 times higher than TiO2 at 1.23 V vs. RHE due to the construction of piezoelectric-heterostructures. This work provides a piezoelectric polarization strategy for modulating the built-in electric field of heterojunction for PEC system.

     

  • loading
  • [1]
    Y. Zhang, Y. Bu, L. Wang, J.-P. Ao, Green Energy Environ. 6(2021)479-495.
    [2]
    S. Bai, J. Jiang, Q. Zhang, Y. Xiong, Chem. Soc. Rev. 44(2015)2893-2939.
    [3]
    F. Li, L. Cheng, J. Fan, Q. Xiang, J. Mater. Chem. A 9(2021)23765-23782.
    [4]
    J. Huang, Y. Wang, K. Chen, T. Liu, Q. Wang, Chin. Chem. Lett. 33(2022)2060-2064.
    [5]
    Z. Chi, J. Zhao, Y. Zhang, H. Yu, H. Yu, Green Energy Environ. 7(2022)372-393.
    [6]
    L. Meng, L. Li, Nano Res. Energy 1(2022) e9120020.
    [7]
    Y. Du, B. Li, G. Xu, L. Wang, InfoMat 5(2022) e12377.
    [8]
    J. Li, L. Wang, W. Wang, X. Jia, Y. Zhang, H. Yang, Y. Li, Q. Zhou, Appl. Catal., B 334(2023)122833.
    [9]
    W. Zhai, Y. Ma, D. Chen, J.C. Ho, Z. Dai, Y. Qu, InfoMat 4(2022) e12357.
    [10]
    X. Tao, Y. Zhao, S. Wang, C. Li, R. Li, Chem. Soc. Rev. 51(2022)3561-3608.
    [11]
    H. Li, T. Wang, S. Liu, Z. Luo, L. Li, H. Wang, Z.J. Zhao, J. Gong, Angew. Chem. Int. Ed. 60(2021)4034-4037.
    [12]
    Y. Yang, W. Cheng, Y.F. Cheng, Appl. Surf. Sci. 476(2019)815-821.
    [13]
    I. Vamvasakis, I.T. Papadas, T. Tzanoudakis, C. Drivas, S.A. Choulis, S. Kennou, G.S. Armatas, ACS Catal. 8(2018)8726-8738.
    [14]
    H. Bai, X. Li, Y. Zhao, W. Fan, Y. Liu, Y. Gao, D. Xu, J. Ding, W. Shi, Appl. Surf. Sci. 538(2021)148150.
    [15]
    S.-S. Yi, B.-R. Wulan, J.-M. Yan, Q. Jiang, Adv. Funct. Mater. 29(2019)1801902.
    [16]
    L. Luo, W. Chen, S.M. Xu, J. Yang, M. Li, H. Zhou, M. Xu, M. Shao, X. Kong, Z. Li, H. Duan, J. Am. Chem. Soc. 144(2022)7720-7730.
    [17]
    A. Rubino, R. Zanoni, P.G. Schiavi, A. Latini, F. Pagnanelli, ACS Appl. Mater. Interfaces 13(2021)47932-47944.
    [18]
    X.J. Guan, S.C. Zong, S.H. Shen, Nano Res. 15(2022)10171-10184.
    [19]
    Y. Ma, Y. Zhang, M. Xing, S. Kang, M. Du, B. Qiu, Y. Chai, Chem. Commun. 58(2022)6642-6645.
    [20]
    S. Wang, L. Pan, J.J. Song, W. Mi, J.J. Zou, L. Wang, X. Zhang, J. Am. Chem. Soc. 137(2015)2975-2983.
    [21]
    L. Pan, M. Ai, C. Huang, L. Yin, X. Liu, R. Zhang, S. Wang, Z. Jiang, X. Zhang, J.J. Zou, W. Mi, Nat. Commun. 11(2020)418.
    [22]
    L. Pan, S. Wang, W. Mi, J. Song, J.-J. Zou, L. Wang, X. Zhang, Nano Energy 9(2014)71-79.
    [23]
    L. Pan, S. Wang, J. Xie, L. Wang, X. Zhang, J.-J. Zou, Nano Energy 28(2016)296-303.
    [24]
    Z. Ai, Y. Shao, B. Chang, L. Zhang, J. Shen, Y. Wu, B. Huang, X. Hao, Appl. Catal., B 259(2019)118077.
    [25]
    G. Zhao, S. Hao, J. Guo, Y. Xing, L. Zhang, X. Xu, Chin. J. Catal. 42(2021)501-509.
    [26]
    L. Pan, S. Sun, Y. Chen, P. Wang, J. Wang, X. Zhang, J.J. Zou, Z.L. Wang, Adv. Energy Mater. 10(2020)2000214.
    [27]
    F. Chen, H. Huang, L. Guo, Y. Zhang, T. Ma, Angew. Chem. Int. Ed. 58(2019)10061-10073.
    [28]
    Y. Yu, X. Wang, Adv. Mater. 30(2018)1800154.
    [29]
    Y. Liu, Z. Wang, C. Lin, J. Zhang, J. Feng, B. Hou, W. Yan, M. Li, Z. Ren, Appl. Surf. Sci. 609(2023)155345.
    [30]
    C. Yu, J. He, M. Tan, Y. Hou, H. Zeng, C. Liu, H. Meng, Y. Su, L. Qiao, T. Lookman, Y. Bai, Adv. Funct. Mater. 32(2022)2209365.
    [31]
    Q. Liu, F. Zhan, H. Luo, D. Zhai, Z. Xiao, Q. Sun, Q. Yi, Y. Yang, D. Zhang, Appl. Catal., B 318(2022)121817.
    [32]
    M.L. Xu, M. Lu, G.Y. Qin, X.M. Wu, T. Yu, L.N. Zhang, K. Li, X. Cheng, Y.Q. Lan, Angew. Chem. Int. Ed. 61(2022)202210700.
    [33]
    H. You, Z. Wu, L. Zhang, Y. Ying, Y. Liu, L. Fei, X. Chen, Y. Jia, Y. Wang, F. Wang, S. Ju, J. Qiao, C.H. Lam, H. Huang, Angew. Chem. Int. Ed. 58(2019)11779-11784.
    [34]
    G. Wan, L. Yin, X. Chen, X. Xu, J. Huang, C. Zhen, H. Zhu, B. Huang, W. Hu, Z. Ren, H. Tian, L. Wang, G. Liu, H.M. Cheng, J. Am. Chem. Soc. 144(2022)20342-20350.
    [35]
    Y. Liu, S. Ye, H. Xie, J. Zhu, Q. Shi, N. Ta, R. Chen, Y. Gao, H. An, W. Nie, H. Jing, F. Fan, C. Li, Adv. Mater. 32(2020)1906513.
    [36]
    Y. Li, T. Wang, M. Asim, L. Pan, R. Zhang, Z.-F. Huang, Z. Chen, C. Shi, X. Zhang, J.-J. Zou, Trans. Tianjin Univ. 28(2022)163-173.
    [37]
    R. Zhang, Y.-C. Zhang, L. Pan, G.-Q. Shen, N. Mahmood, Y.-H. Ma, Y. Shi, W. Jia, L. Wang, X. Zhang, W. Xu, J.-J. Zou, ACS Catal. 8(2018)3803-3811.
    [38]
    Y.-C. Zhang, S. Ullah, R. Zhang, L. Pan, X. Zhang, J.-J. Zou, Appl. Catal., B 277(2020)119247.
    [39]
    R. Song, H. Chi, Q. Ma, D. Li, X. Wang, W. Gao, H. Wang, X. Wang, Z. Li, C. Li, J. Am. Chem. Soc. 143(2021)13664-13674.
    [40]
    C. Yang, Y. Chen, T. Chen, S. Rajendran, Z. Zeng, J. Qin, X. Zhang, Fuel 314(2022)122758.
    [41]
    X. Zhou, B. Shen, A. Lyubartsev, J. Zhai, N. Hedin, Nano Energy 96(2022)107141.
    [42]
    M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G.A. Rossetti, J. Rodel, Appl. Phys. Rev. 4(2017)041305.
    [43]
    F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu, Nat. Commun. 11(2020)4613.
    [44]
    X. Zhou, X. Wang, T. Tan, H. Ma, H. Tang, X.a. Luo, F. Dong, Y. Yang, Chem. Eng. J. 470(2023)143933.
    [45]
    X. Pang, H. Bai, H. Zhao, W. Fan, W. Shi, ACS Catal. 12(2022)1545-1557.
    [46]
    X. Pang, H. Bai, Y. Huang, H. Zhao, G. Zheng, W. Fan, J. Catal. 417(2023)22-34.
    [47]
    S.M. Wu, Y.T. Wang, S.T. Xiao, L.Y. Wang, G. Tian, J.B. Chen, J.W. Liu, M. Shalom, X.Y. Yang, Nanoscale 14(2022)13373-13377.
    [48]
    T. Wang, L. Liu, G. Ge, M. Liu, W. Zhou, K. Chang, F. Yang, D. Wang, J. Ye, J. Catal. 367(2018)296-305.
    [49]
    Y. Xiao, Z. Fan, M. Nakabayashi, Q. Li, L. Zhou, Q. Wang, C. Li, N. Shibata, K. Domen, Y. Li, Nat. Commun. 13(2022)7769.
    [50]
    Y. Hu, Y. Pan, Z. Wang, T. Lin, Y. Gao, B. Luo, H. Hu, F. Fan, G. Liu, L. Wang, Nat. Commun. 11(2020)2129.
    [51]
    Q. Meng, B. Zhang, L. Fan, H. Liu, M. Valvo, K. Edstrom, M. Cuartero, R. de Marco, G.A. Crespo, L. Sun, Angew. Chem. Int. Ed. 58(2019)19027-19033.
    [52]
    M. Zhang, F. Li, D. Benetti, R. Nechache, Q. Wei, X. Qi, F. Rosei, Nano Energy 81(2021)105626.
    [53]
    W. Bai, Y. Zhou, G. Peng, J. Wang, A. Li, P.F.-X. Corvini, Appl. Catal., B 315(2022)121606.
    [54]
    H. Zhang, D. Li, W.J. Byun, X. Wang, T.J. Shin, H.Y. Jeong, H. Han, C. Li, J.S. Lee, Nat. Commun. 11(2020)4622.
    [55]
    G. Yang, Y. Li, H. Pang, K. Chang, J. Ye, Adv. Funct. Mater. 29(2019)1904622.
    [56]
    S. Zhang, Z. Liu, M. Ruan, Z. Guo, L. E, W. Zhao, D. Zhao, X. Wu, D. Chen, Appl. Catal. B Environ. 262(2020)118279.
    [57]
    L. Chen, Y. Xu, B. Chen, Appl. Catal., B 256(2019)117848.
    [58]
    G. Zhang, Y. Xu, M. Rauf, J. Zhu, Y. Li, C. He, X. Ren, P. Zhang, H. Mi, Adv. Sci. 9(2022)2201677.
    [59]
    Y. Zheng, Q. Ruan, J. Ren, X. Guo, Y. Zhou, B. Zhou, Q. Xu, Q. Fu, S. Wang, Y. Huang, Appl. Catal., B 323(2023)122170.
    [60]
    J. Zhang, Y. Zou, S. Eickelmann, C. Njel, T. Heil, S. Ronneberger, V. Strauss, P.H. Seeberger, A. Savateev, F.F. Loeffler, Nat. Commun. 12(2021)3224.
    [61]
    F. Wang, Q. Ding, J. Ding, Y. Bai, H. Bai, W. Fan, Chem. Eng. J. 450(2022)138260.
    [62]
    M. Zhang, J. Wang, H. Xue, J. Zhang, S. Peng, X. Han, Y. Deng, W. Hu, Angew. Chem. Int. Ed. 59(2020)18463-18467.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (107) PDF downloads(5) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return